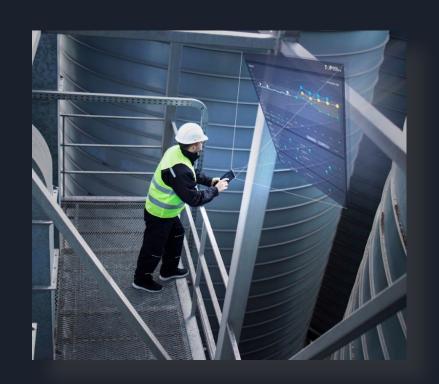
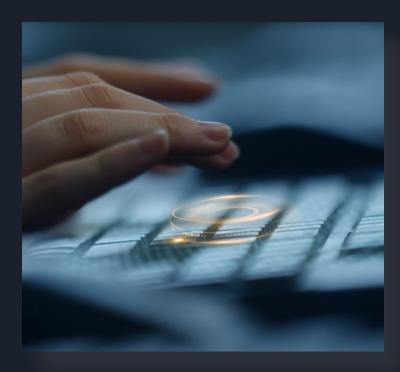


LUMI user case: Top Data Science

Top Data Science

- Specialized AI, machine learning and software services for multiple industries igodol
- Highly experienced team of data scientists, software engineers and business professionals
- Located in Espoo, Finland igodot
- Excellent customer track record Finland, Japan, Germany, Sweden, South Korea 0


Speciality Areas



Industrial Computer Vision

Services that enable business process automation for higher productivity, quality and safety. Areas of expertise e.g.

- Factory & Process Automation
- Quality Assurance
- Safety & Security

Software Frameworks

Software frameworks and services to extend AI-based automation through application development

- Flexibility
- Interoperability
- Scalability
- Cloud & edge

Business and Process Optimization

Enabling optimizing business & process performance to achieve your business and sustainability targets

- Forestry and biomaterials industry
- Manufacturing

Customized AI Solutions

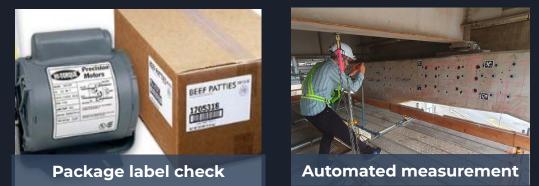
Practical problem solving by combining customer domain knowledge and our Al knowhow

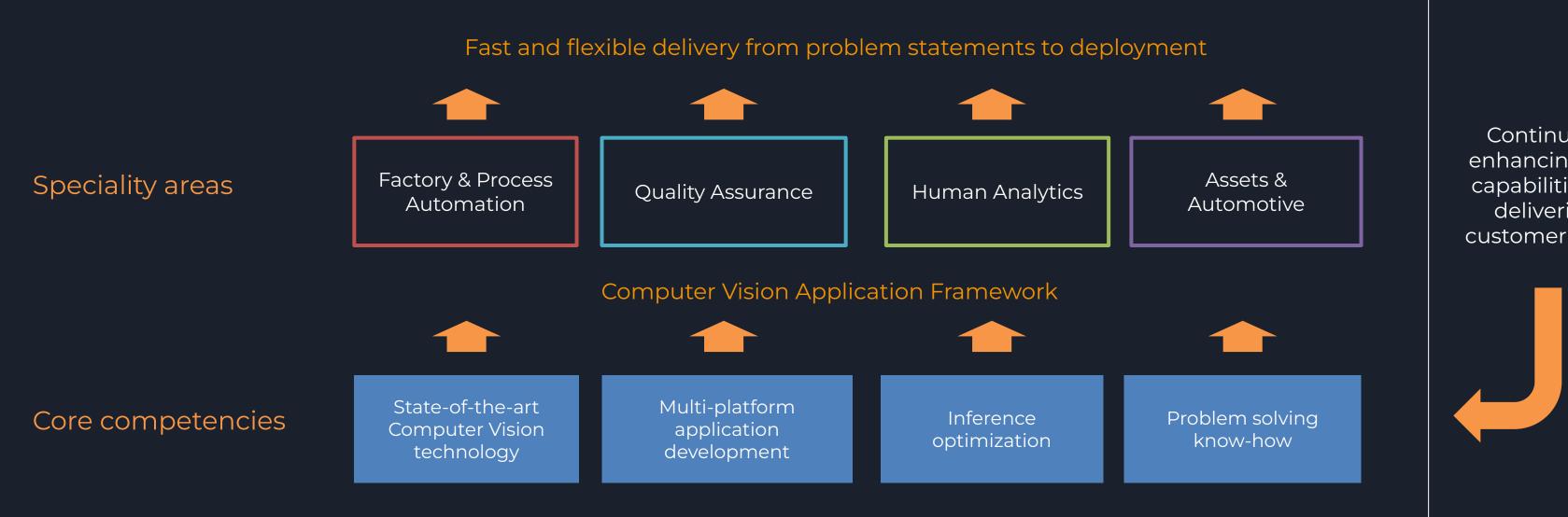
- Fast prototyping
- Sharing best practices
- From POC to production

AISA project - co-innovation with leading organizations

Our focus in AISA project

- Computer vision (CV) framework to enable fast implementation of scalable CV applications
- Extending the automation ightarrowsupport towards action logic




Industrial Computer Vision - Our Approach

Customer value through specific use cases

Situational awareness

Continually enhancing our capabilities by delivering customer value

Computing resources taxonomy for AI development

Al development requires diverse computing resources, each offering distinct capabilities suited to various stages of model development and deployment.

Edge computing	Embedded systems	Workstations and high- performance PCs	Cloud-based Al services	Supercomputers
Enables processing data near its source, such as on IoT devices or local servers.	Specialized computing platforms integrated into devices like wearables or consumer electronics.	Powerful computers equipped with advanced CPUs, GPUs, and substantial RAM.	Scalable computing resources, including specialized Al accelerators.	Large-scale systems designed for high-speed, parallel processing.
This approach minimizes latency and bandwidth usage, making it suitable for real-time Al applications.	They run Al models directly on-device, reducing the need for cloud connectivity and enhancing privacy.	Provides balance between performance and cost, suitable for developing smaller AI models without relying on cloud services.	High-performance computing without upfront HW investments, supporting the training of large AI models.	They provide immense computational power for training complex AI models across vast datasets.

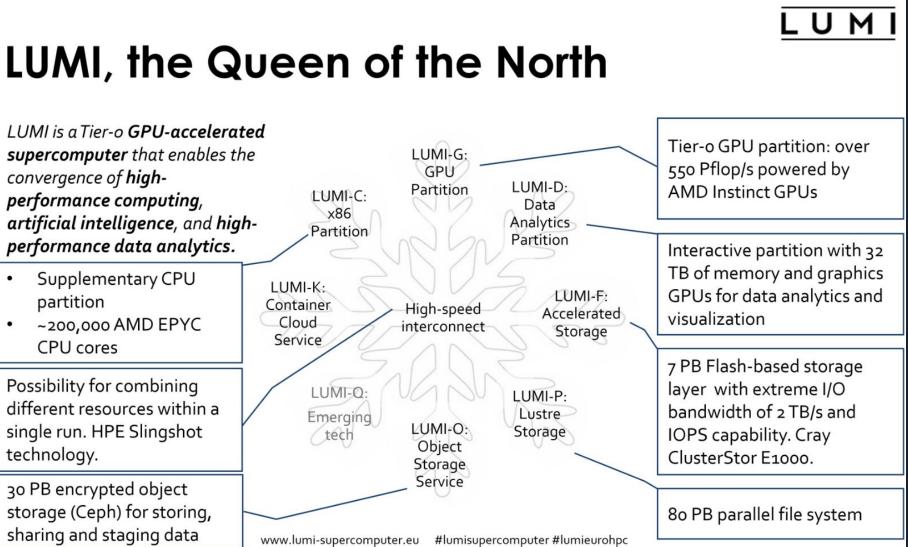
LUMI Experiments: Background

- Business Finland funding within AISA project
- Triton HPC experience in Aalto University
 - Slurm Workload Manager

Objectives:

- Study how LUMI works
- Outsource tasks which would benefit from massive parallelization
- Run tasks which require running on multiple GPUs in parallel

LUMI is a Tier-o GPU-accelerated *supercomputer* that enables the convergence of **high**performance computing, artificial intelligence, and highperformance data analytics.

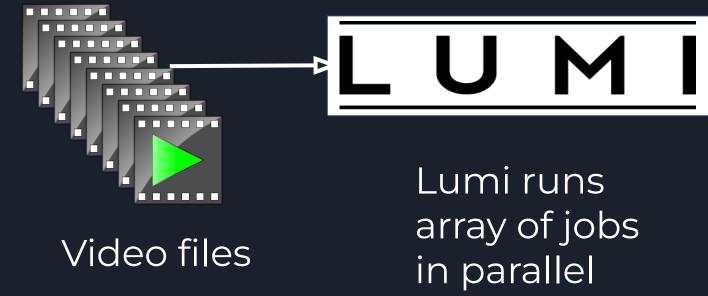

Supplementary CPU partition ~200,000 AMD EPYC

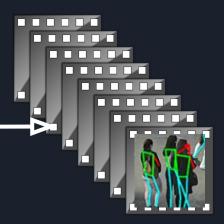
Container

CPU cores Possibility for combining different resources within a single run. HPE Slingshot

30 PB encrypted object storage (Ceph) for storing, sharing and staging data


technology.


Human analytics on LUMI


Use case: Human pose estimation

For some projects we need to pre-process videos and extract human pose estimation skeletons for further processing

- Data:
 - Multiple video clips 0

Trajectories are saved on disk

Custom running environment in LUMI

Issue:

- Human pose estimation code uses **onnxruntime-gpu** library.
- LUMI has **AMD MI250X GPU** nodes.
- To be able to use **onnxruntime** with **AMD GPU** it should be built from the source.
- Isolated running environment can be achieved with **Docker** containerisation.

Steps to solve:

- 1) Create docker image with preinstalled libraries
- 2) Push docker image to the registry
- 3) Pull the image in Lumi with singularity software

\$ singularity pull docker://khakaloksenia/onnx_rocm

4) Specify the image as running environment when submitting the jobs

1 \$ srun --partition=<partition> --account=<account> singularity exec onnx_rocm_latest.sif cat /etc/os-release

	# # Cop # Lic
100	#
5	# Doc
6	#
7	
8	FROM
9	
10	ARG C
11	ARG C
12	
13	WORKD
14	
15	ENV F
16	
	# Pre
	RUN g
19	/
20	c
21	/
22	C
23	k
24	C

Dockerfile.rocm

pyright (c) Microsoft Corporation. All rights reserved. censed under the MIT License.

kerfile to run ONNXRuntime with ROCm integration

rocm/pytorch:rocm5.4_ubuntu20.04_py3.7_pytorch_1.12.1

ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime ONNXRUNTIME_BRANCH=main

DIR /code

PATH /opt/miniconda/bin:/code/cmake-3.27.3-linux-x86_64/bin:\${PATH}

epare onnxruntime repository & build onnxruntime git clone --single-branch --branch \${ONNXRUNTIME_BRANCH} --recursive \${ONNXRUNTIM /bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh &&\ cd onnxruntime &&\ /bin/sh ./build.sh --allow_running_as_root --config Release --build_wheel --update

ONNXRUNTIME_VERSION=\$(cat ./VERSION_NUMBER) --use_rocm --rocm_home=/opt/rocm &&\ pip install /code/onnxruntime/build/Linux/Release/dist/*.whl &&\ cd ..

Conclusions and future steps

Conclusions:

- Overall a great experience!
- Good documentation
- Good flexibility
- Effective for running parallel jobs which are small enough to fit to 1 GPU node

Future steps:

- Interactive data analytics and visualization with LUMI-D nodes
 - Try prototyping with LUMI
- Experiments with larger models (like LLMs) which do not fit to our local servers
 - Some open source models like DeepSeek R1 can be used for data processing to 0 create custom datasets

Summary

The primary advantage for us was to understand what LUMI offers, and how it should be strategically positioned for our AI solution development.

This helps us address customer problems and deliver tailored solutions that go beyond what the normal computational setup offers.

Thank you!

Kai Lehtinen, COO

Kseniia Khakalo, Lead Data Scientist

Phone Number

+358 40 5912369

Email Address

kai.lehtinen@topdatascience.com

Empower Your Business with AI

We help our customers to unlock value with innovative use of AI technologies

Website www.topdatascience.com