
HOW TO TRUST AN LLM

YOKOT.AI case study
Mikko Lehtimäki, PhD, CTO, Softlandia



YOKOT.AI CORE

More than RAG

OS LLM

YOKOT.AI Web UI

YOKOT.AI CORE
Vector embeddings & search

Chat & Workflows

User management (Azure Entra ID)

Multitenant support

Data handling (tagging)

1. Prompt 

LLMs

Crawled 
websites

Uploaded local 
data

Document 
management

Your data sources

3. Prompt with relevant 
knowledge from your data 

2. Get the best matching 
data for the query

* Currently mostly OpenAI used

YOKOT.AI API 



Technology



LLM capabilities can surprise!

Dell'Acqua et. al., 2023, Navigating the Jagged Technological Frontier: 
Field Experimental Evidence of the Effects of AI on Knowledge Worker 
Productivity and Quality, Harvard Business School & Boston Consulting 
Group



How to develop a reliable LLM solution

It’s a mix of traditional SW and ML.

- Define the task
- Observe the behavior
- Evaluate the answers

These steps are useful even when using an LLM as a development tool, 
and LLMs can help us along the way!



Case Study: structured 
data extraction

1. Determine data 
structure from user 
instructions

2. Extract structured data 
across a large number 
of documents



The problem

Same model, same task, slightly different prompts, different outcomes

Software: Promptfoo

Output: 0 Output: 3 Output: -1



Observability

Precise prompts and 
outputs must be 
stored, tracked, 
evaluated!

Relevant during 
development and in 
production.

Software: Langfuse



Evaluation

- Systematically score responses from LLMs to spot errors
- Value: get understanding of the type of errors your LLM makes.
- A flexible way to evaluate how an LLM performs is… another LLM

- Works partly due to inference time scaling



Evaluation

Define inputs 
(prompts and test 
variables), LLMs and 
assertions.

Software: Promptfoo



Output like this helps to compare, prototype and evaluate!



Data

Data is needed for

- Including examples of expected behavior in the prompt
- Fine tuning language models
- Testing your prompt on many inputs
- Evaluating the performance of your prompt
- Breaking your product (red-teaming)!

Some of these overlap!

Use LLMs to generate data initially, humans to confirm and edit!



Prompt engineering to generate data

Human verification

Create an initial prompt, 
verify created prompts. Use 

Claude / ChatGPT to help!

Evaluate prompts

Run the generated prompts in 
your evaluations. You know 
what to expect from each 
prompt.

DSPy can help to choose best 
prompts.

Collect input - output 
pairs

This will be your ground truth. 
To use an LLM to generate the 
data, start from expected 
results!

03 

01 02 



Prompt engineering to generate data

A sample workflow:

1. Define the task the LLM needs to do
2. Create a prompt that defines the task

a. Ask Claude to help!
3. Collect input - expected output pairs

a. Laborsome part, ask an LLM to help!
b. To get a balanced dataset, start from the expected result! E.g. regarding the political axes 

example: Generate statements that would score -5 on debt_vs_expenses axis..
4. Evaluate prompts on this data

a. Exact result matching is doable with numerical outputs
b. To evaluate free text, typical assertions are

5. Go back to 2



Create a prompt to grade answers



Create a prompt to create data..









Prompt engineering to generate data

Human verification

Create an initial prompt, 
verify created prompts. Use 

Claude / ChatGPT to help!

Next: Evaluate 
prompts

Run the generated prompts in 
your evaluations. You know 
what to expect from each 
prompt.

DSPy can help to choose best 
prompts.

Collect input - output 
pairs

This will be your ground truth. 
To use an LLM to generate the 
data, start from expected 
results!

03 

01 02 



Summary of tools

- ChatGPT / Claude with Canvas / Artifacts for continuous ideation and data generation
- Claude Artifacts is more advanced than ChatGPT Canvas

- Copilot when starting a new project with boilerplate
- Gp.nvim (or any other plugin) for targeted edits
- ShellGPT for easing command line
- Custom assistant for file editing / Github / web search
- Repopack for sending repositories to ShellGPT / Gp.nvim / ChatGPT
- Langfuse for fancy LLM call logging and prompt storage
- Promptfoo for prototyping prompts and simple evals
- Root Signals or Opik for extensive evaluation
- DSPy for prompt optimization (hit and miss)
- OpenHands for complete code development



Educate

ExperimentEmpower


