Generative Al
assisted develo

- Practical experiences

FIIF seminar 10.10.2024

Harnessing the power of LLMs like
ChatGPT in software development

Antti Lammi

futurice

WE ARE FUTURICE

| Nordlc roots global mlndset

"PEOPLE "~
- COUNTRIES
NATIONALITIES

CONS. YEARS OF GROWTH -

25

FAMILY OF COMPANIES

C%Z‘f&* meltlake®

Digital commerce A Microsoft specialist
consultancy consultancy

Care. Trust Transparency
Contlnuous |mprovement

‘These are our core values,

‘and the cornerstones of our

company culture. They

define how we work, provide.

continuity in a changing -
‘world, and keep us unlque
‘The worth of our culture is -
determined by what
happens when nobody i |s

~ watching.
= fram
THR=VY AECOADLY } partners
Hand-picked developers Future-proof, robust, and Senior Lead developers, architects
with passion and expertise secure data solutions and product managers

Stockholm

Stuttgart

wAY

INTERIM

Interim and fractional executive
services

QLARIFY

Quality engineering,
coaching, and leadership.

GenAl in software development process

TOday: Deve|oper Point Of V|eW Coding and Development \

Code Generation
Code Review and Quality Assurance
Pair Programming
Documentation
Prototyping

Code conversion
SQL fine-tuning

~

A 4

Requirements Gathering
and Analysis

e Natural Language Processing (NLP)
° Predictive Analysis

-

v

Quality Assurance

° Automated Test Case
Generation
° Defect Prediction

Design

) Automated Design
Prototyping
° UI/UX Optimization

Deployment Maintenance and Operations

° Predictive Maintenance
o Log Analysis

Predictive Deployment
Continuous Integration/
Continuous Deployment (CI/CD)

User Feedback and Adaptation

° Sentiment Analysis

: futurice
° Feature Usage Analysis

WHITE

Survey for
Futurice
Developers

We conducted an exploratory survey targeting
our own developer community to gain insights
into the current landscape of Al-powered coding
tools. The survey aimed to understand the
adoption, use cases, perceived productivity
impact, effectiveness, challenges, and overall
sentiment towards generative Al tools within our
development processes.

Futurice

Are you using
Gen Al toolsin
software
development?

82%
Yes, including
client projects

12%
Yes, but only in
hobby projects

6%
No

Futurice developers
05/2024

Futurice

Which Gen Al tools have

85%
you tried in software .
(<]
development?
05/2024
23%
6%
2% 2% 2% 2% 2% 2% 4% 4%
0 0 0 0 0
I I -
AmazonQ CodiumAl Source Jetbrains Amazon Codeium Microsoft Client’s Cursor Tabnine Agent Futucortex Phind Meta Google Github Chat
Graph Al Code Copilot own based LLama Gemini Copilot GTP
Cody Assistant Whisperer internal Al frame

bot works

How have you been using o
Gen Al in development?

60%
05/2024
51%
L4%
42%
2% 2% 2% 2% 2% 2% 2%
I chat with Searching By exploring Learning how Sparring on Nonclient IP Suggestions Documentation Refactoring Test generation Code Code
Microsoft answersfrom ideashowto somenewtech certaintopics questions explanation generation

Copilot internal solve a problem works I’'m not familiar
systems with

Do you think these o

tools make you

more productive? 30%
Maybe
05/2024
Futurice developers
05/2024
65%
Yes

Futurice

GenAl Tooling

Features and their usefulness

From the coding perspective

Offered features can be roughly
divided to the following most
useful ones. Subjective ranking
and opinion on usefulness.

Autocomplete

Purpose

Autocomplete on word
/line level. Competing
with your IDEs normal
autocomplete.

Superb! Gives a
noticeable
productivity boost.
Able to autocomplete
stuff your standard
IDE/Language server
cannot.

Pattern generation

Purpose

Autocomplete larger
chunk of code based
on already existing
code. Cases: pattern
matching, repetitive
code (case study
later), missing if
branches, adding
more test cases
following the same
test pattern.

Superb! Can save a lot
of manual typing.
Sometimes really
excels on creating test
case boilerplate code.

Implement

Purpose

Implement small code
snippets or functions
with clearly defined
input/output and
definition. Most
effective if no
dependencies to
anything otherin
workspace. Not for
feature
implementation.

Effectiveness

Mediocre.
Hallucinations start to
occur. Works 50/50.

Explain

Purpose

Explain some piece of
code.

Effectiveness

OK. Can give good
results and sometimes
be completely off.

Documentation

Purpose

Write basic docson a
function level.

Effectiveness

Quite good to state
the obvious butin
cases where there
really is a need for
code comments we
have not had much
success.

Fix / Refactor

Purpose

Work on a piece of
code that has some
issue or that would
use some refactoring.

Effectiveness

Bad. Often ends up
taking more time than
doing it yourself.

Generate tests

Purpose

Generate test cases
from scratch. Only
applicable for testing
those simple well
defined functions.Ina
real world project with
many dependencies
and oftenrelated
mocked modules this
does not work.

Effectiveness

Bad. Can create tests
mostly for things not
worth testing
(depends on your
testing philosophy).

futurice

Case study

Autocomplete:
Pattern generation

I futurice

Case study: Pattern generation

‘ Set the scene

We need to apply a given
pattern for a set of values, Here
we have provided a pattern but
still need to add more values for
the message status.

TS generation.ts @

TS generation.ts > ...

export const MESSAGE_STATUS_PENDING: MESSAGE_STATUS = 'pending';
export type MESSAGE_STATUS = 'pending';

O 00 NO UL A~ WN -

Case study: Pattern generation

@ Generate

Using the copilot inline chat we
get a great success for filling in

TS generation.ts @

1

the values.
TS generation.ts > ...
add statuses DRAFT, PUBLISHED, DELETED, ARCHIVED 0 B x .-
& GitHub Copilot
Made changes.
m Discard @® Accept or Discard 1 change.
export type MESSAGE_STATUS = 'pending' | 'draft' | 'published' | 'deleted' | 'archived';
export const MESSAGE_STATUS_PENDING: MESSAGE_STATUS = 'pending';
export const MESSAGE_STATUS_DRAFT: MESSAGE_STATUS = ‘'draft';
export const MESSAGE_STATUS_PUBLISHED: MESSAGE_STATUS = 'published';
export const MESSAGE_STATUS_DELETED: MESSAGE_STATUS = 'deleted';

O o0 ~NO UL A WN

export

const MESSAGE_STATUS_ARCHIVED: MESSAGE_STATUS = 'archived';

Case study

Working with unknown languages or
HEINEWILE

I futurice

CHAT + 9O -

Case study: Working with unknown frameworks "W grahamdaw

Give me an example project structure for a FastAPI project

L] L] L]
B | n & GitHub Copilot
u I I g a p r OJ e C A typical FastAPI project might have a structure like this:

/myproject
/app

__init__.py

main.py

/routers
__init__.py
users.py
items.py

/models
__init__.py
users.py
items.py

/schemas
__init__.py
users.py
items.py

/tests
test_main.py

Combine this with your Think of it as the perfect blog post you find where test_users.py
own human experience somebody has written about doing 90% of what you want e

.env

on what really matters to do (but with interactivity!) e
ockerTtlle
When de“venng requirements.txt
- README . md
projects.

Here's what each part does:

® main.py: This is where you create your FastAPI application, register your routers, and configure any
middleware.

® /routers : This directory contains different routers (similar to controllers in other frameworks). Each
router is responsible for a specific part of your API (e.g., users, items).

* /models : This directory contains Pydantic models, which you use to validate the data your APl works
with.

® /schemas : This directory contains Pydantic schemas, which you use to structure the data your API
returns.

Case study: Working with unknown frameworks

with LLMs

Each time suggestions would come - sometimes good,
sometimes bad.

But at the core it replaced what would take copious
amounts of searching, experimenting and documentation
with very targeted suggestions and solutions.

‘ Augmenting knowledge

Keeping clear context,
simple questions and,
most of all, iterating the
results will get much
better results.

IMI grahamdaw

@workspace /explain Write an explanation for the active selection as
paragraphs of text.

[D ,g
@contextmanager 1

def http exception handline():l

& </ GitHub Copilot used @workspace /explain & &
Used 1 reference >

The active selection is a Python function declaration that is intended to be used as
a context manager for handling HTTP exceptions.

The @contextmanager is a decorator provided by the contextlib module in
Python's standard library. This decorator is a way to define a factory function for
with statement context managers, without needing to create a class or separate
__enter_ () and __exit_ () methods.

Case study: Working with unknown frameworks GenAl tools used

® Collaboration not automation & GitHub Copilot

https://github.com/features/copilot

GenAlis not a silver “Make me a FastAPI API The problem is currently
bullet. that has these too complex and the C h atG PT
endpoints that context required is too
. . —>
integrate to this and large.
considers that...”

https://chat.openai.com/chat

phind

From idea to product

https://www.phind.com/

§ CURSOR

https://www.cursor.com/

https://www.phind.com/
https://chat.openai.com/chat
https://github.com/features/copilot
https://www.cursor.com/

Cursor - VS Code Replica with Al
Native Features

I futurice

Case study: Cursor - adding framework documentation

‘ Adding

documentation to
your question

You can give a URL that Cursor will
then “eat” - that documentation
then becomes “taggable” when

writing new prompts.

CHAT

+ Add context
@docs

V' Clauge-3.5-sonnet @ Mention ¥ Image

CHAT SERONEL X

+ Add context

@
Docs
OpenAl Structured Outputs Indexed 9/3/24, 3:29 PM §8% © chat e
PyTorch Indexed 9/16/24, 11:33 AM B

Vi]
Accord.NET Official e

Active Admin Official
ActiveRecord Official ——
Active Storage Official

Amazon EC2 Official

Amazon S3 Official

Commit (Diff ... 2w ago

+ O 8 x

L& no context ¢ chat 38 codebase v

@ NAME B3 PREFIX
Tailwind CSS Docs
@ ENTRYPOINT

https://github.com/tailwindlabs/tailwindcss

Make sure the compenent follows the documentation from @Tailwind CSS Docs

v claude-3.5-sonnet @ Mention B Image

X e nocontext ¢ chat $¢ codebase v

https://github.com/tailwindlabs

Learnings and
considerations

[
I BERLIN / HELSINKI / LONDON / MUNICH / STOCKHOLM / STUTTGART / TAMPERE fU t U r I c e

- What have we learned?

Nz

Bad:
Complexity
Validation
Hallucinations

A

Speed of tool
development
is blinding

What we learn today might be
obsolete next month, week,

Invaluable tool when you are
not a deep expert on the
day. chosen tech stack

GenAl cannot currently handle
complexity and dependencies

Would not suggest using code
Cursor type intelligent agent Why Google / Stack Overfiow without human validation
seems to be the current anymore?
spearhead Hallucinations from thin air
Autocomplete is magic & a can cause serious negative

21 source of frustration attitude towards the tools

Almost all of our current
experience is with using GenAl
in existing projects

Development nor tools are not
geared towards machine-
produced code

Futurice

Learnings & considerations

Context is king

IDE integrated tools only as good as their ability to figure out the appropriate
context.

Going deeper, GitHub Copilot is powered by OpenAl Codex. The
auto-generated suggestions come from the context within the file, like
function names, code comments, docstrings, file names, cursor position, and
more.

Figuring out the proper context is likely going to be the differentiating factor
between the tools.

Always remember that Generative Al powered tools, especially related to
developer assistance, will be more likely to produce good results when
there is:

- Just theright amount of context
- Aclear objective

Thank you

futurice

-

futurice
Empowering the world to act.

