
Generative AI
assisted development
- Practical experiences

FIIF seminar 10.10.2024
Harnessing the power of LLMs like
ChatGPT in software development

Ani Lammi

Nordic roots, global mindset

These are our core values,
and the cornerstones of our
company culture. They
define how we work, provide
continuity in a changing
world, and keep us unique.
The worth of our culture is
determined by what
happens when nobody is
watching.

Care. Trust. Transparency.
Continuous improvement.

PEOPLE

COUNTRIES

NATIONALITIES

CONS. YEARS OF GROWTH

London

Stockholm

Helsinki

Tampere

Berlin

Munich

Stugart

800+

6
63

23

Poland

Portugal

FAMILY OF COMPANIES

Digital commerce
consultancy

A Microsoft specialist
consultancy

Hand-picked developers
 with passion and expertise

Future-proof, robust, and
secure data solutions

Senior Lead developers, architects
and product managers

Interim and fractional executive
services

Quality engineering,
coaching, and leadership.

WE ARE FUTURICE

Today: Developer Point of View
GenAI in software development process

Requirements Gathering
and Analysis

● Natural Language Processing (NLP)
● Predictive Analysis

Design
● Automated Design

Prototyping
● UI/UX Optimization

Coding and Development
● Code Generation
● Code Review and Quality Assurance
● Pair Programming
● Documentation
● Prototyping
● Code conversion
● SQL fine-tuning
● …

Maintenance and Operations
● Predictive Maintenance
● Log Analysis

Quality Assurance
● Automated Test Case

Generation
● Defect Prediction

Deployment
● Predictive Deployment
● Continuous Integration/

Continuous Deployment (CI/CD)

User Feedback and Adaptation
● Sentiment Analysis
● Feature Usage Analysis

BLACK WHITE

Survey for
Futurice
Developers
We conducted an exploratory survey targeting
our own developer community to gain insights
into the current landscape of AI-powered coding
tools. The survey aimed to understand the
adoption, use cases, perceived productivity
impact, eectiveness, challenges, and overall
sentiment towards generative AI tools within our
development processes.

Are you using
Gen AI tools in
software
development?

Futurice developers
05/2024

12%
Yes, but only in
hobby projects

82%
Yes, including

client projects

6%
No

Which Gen AI tools have
you tried in software
development?

Jetbrains
AI

Assistant

05/2024

Amazon
Code

Whisperer

Client’s
own

internal AI
bot

Cursor Tabnine Agent
based
frame
works

Futucortex Phind Meta
LLama

Google
Gemini

Chat
GTP

Github
Copilot

66%

Amazon Q CodiumAI Source
Graph
Cody

85%

23%

6%
4%4%2%2%2%2%

00000

Codeium Microsoft
Copilot

2%2%

How have you been using
Gen AI in development?

Searching
answers from

internal
systems

By exploring
ideas how to

solve a problem

Learning how
some new tech

works

Sparring on
certain topics

I’m not familiar
with

Non client IP
questions

Suggestions Documentation Refactoring Test generation Code
explanation

Code
generation

94%

60%

51%

44%
42%

2%

I chat with
Microsoft

Copilot

2%2%2%2%2%2%

05/2024

Do you think these
tools make you
more productive?

Futurice developers
05/2024

30%
Maybe

65%
Yes

5%
No

05/2024

Features and their usefulness
From the coding perspective

GenAI Tooling

Autocomplete

Purpose

Eectiveness

Autocomplete on word
/ line level. Competing
with your IDEs normal
autocomplete.

Superb! Gives a
noticeable
productivity boost.
Able to autocomplete
stu your standard
IDE/Language server
cannot.

Paern generation

Purpose

Eectiveness

Autocomplete larger
chunk of code based
on already existing
code. Cases: paern
matching, repetitive
code (case study
later), missing if
branches, adding
more test cases
following the same
test paern.

Superb! Can save a lot
of manual typing.
Sometimes really
excels on creating test
case boilerplate code.

Implement

Purpose

Eectiveness

Implement small code
snippets or functions
with clearly defined
input/output and
definition. Most
eective if no
dependencies to
anything other in
workspace. Not for
feature
implementation.

Mediocre.
Hallucinations start to
occur. Works 50/50.

Explain

Purpose

Eectiveness

Explain some piece of
code.

OK. Can give good
results and sometimes
be completely o.

Documentation

Purpose

Eectiveness

Write basic docs on a
function level.

Quite good to state
the obvious but in
cases where there
really is a need for
code comments we
have not had much
success.

Fix / Refactor

Purpose

Eectiveness

Work on a piece of
code that has some
issue or that would
use some refactoring.

Bad. Often ends up
taking more time than
doing it yourself.

Generate tests

Purpose

Eectiveness

Generate test cases
from scratch. Only
applicable for testing
those simple well
defined functions. In a
real world project with
many dependencies
and often related
mocked modules this
does not work.

Bad. Can create tests
mostly for things not
worth testing
(depends on your
testing philosophy).

Oered features can be roughly
divided to the following most

useful ones. Subjective ranking
and opinion on usefulness.

Autocomplete:
Paern generation

Case study

Set the scene
Case study: Paern generation

We need to apply a given
paern for a set of values, Here
we have provided a paern but
still need to add more values for
the message status.

1

Generate
Case study: Paern generation

Using the copilot inline chat we
get a great success for filling in
the values.

2

Working with unknown languages or
frameworks

Case study

Building a project
Case study: Working with unknown frameworks

1

Combine this with your
own human experience
on what really maers
when delivering
projects.

When kickstarting new
projects, we draw on
what we have
experienced before.

Conceptually GenAI has
seen many projects and
can summarize what it
has seen.

Think of it as the perfect blog post you find where
somebody has wrien about doing 90% of what you want
to do (but with interactivity!)

Keeping the questions
simple, it is possible to
drill into the how & why
of starting project.

Augmenting knowledge
with LLMs

Case study: Working with unknown frameworks

2

“How create a decorator
in FastAPI?”

“In FastAPI how to get
request headers?”

“What does the
model.dumps() do?”

Each time suggestions would come - sometimes good,
sometimes bad.

But at the core it replaced what would take copious
amounts of searching, experimenting and documentation
with very targeted suggestions and solutions.

Keeping clear context,
simple questions and,
most of all, iterating the
results will get much
beer results.

Collaboration not automation
Case study: Working with unknown frameworks

3

GenAI is not a silver
bullet.

“Make me a FastAPI API
that has these
endpoints that
integrate to this and
considers that…”

These current
generation tools are not
going automate away
our need to understand
and write code.

However, these developer tools generally produce good
results with simple contexts and clear objectives.

These tools are for collaboration where humans and
GenAI build solutions together.

The problem is currently
too complex and the
context required is too
large.

hps://www.phind.com/

hps://chat.openai.com/chat

hps://github.com/features/copilot

GenAI tools used

hps://www.cursor.com/

https://www.phind.com/
https://chat.openai.com/chat
https://github.com/features/copilot
https://www.cursor.com/

Cursor - VS Code Replica with AI
Native Features

Case study

Adding
documentation to
your question

Case study: Cursor - adding framework documentation

1

You can give a URL that Cursor will
then “eat” - that documentation
then becomes “taggable” when

writing new prompts.

BERLIN / HELSINKI / LONDON / MUNICH / STOCKHOLM / STUTTGART / TAMPERE

Learnings and
considerations

21

Speed of tool
development

is blinding

Good:
Learning new

Power-Google
Autocomplete

Bad:
Complexity
Validation

Hallucinations

Starting
development
with GenAI in

mind

What have we learned?

What we learn today might be
obsolete next month, week,
day.

Cursor type intelligent agent
seems to be the current
spearhead

Invaluable tool when you are
not a deep expert on the
chosen tech stack

Why Google / Stack Overflow
anymore?

Autocomplete is magic & a
source of frustration

GenAI cannot currently handle
complexity and dependencies

Would not suggest using code
without human validation

Hallucinations from thin air
can cause serious negative
aitude towards the tools

Almost all of our current
experience is with using GenAI
in existing projects

Development nor tools are not
geared towards machine-
produced code

Learnings & considerations

IDE integrated tools only as good as their ability to figure out the appropriate
context.

Going deeper, GitHub Copilot is powered by OpenAI Codex. The
auto-generated suggestions come from the context within the file, like
function names, code comments, docstrings, file names, cursor position, and
more.

Figuring out the proper context is likely going to be the dierentiating factor
between the tools.

Always remember that Generative AI powered tools, especially related to
developer assistance, will be more likely to produce good results when
there is:

- Just the right amount of context
- A clear objective

Context is king
Learnings & considerations

Thank you

Empowering the world to act.

