

Contents

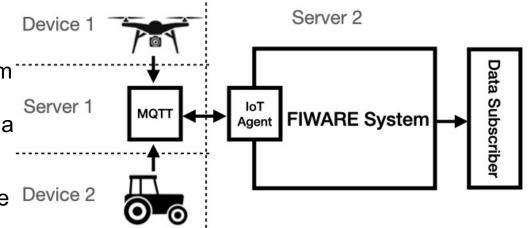
- Intro
- Problem
- Proposed solution
 - System design
 - Components
- Piloting
- Experiences
- Conclusions

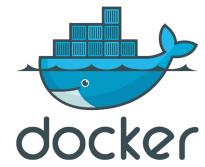
Introduction

- VTT has been involved for a long time with FIWARE
- FIWARE has been deployed and piloted in various EU project pilots
 - Smart cities and buildings
 - Agriculture
 - Sensor networks
- Standard data model (NGSI) is the heart of the FIWARE
- Most common Generic Enablers
 - Context Broker, Timeseries Database
 - Other components as needed

Agricultural Robotics and FIWARE

- Use case in FlexiGroBots EU Project
 - The use of heterogenous fleets of robots to perform agricultural tasks
 - Multiple operators, multiple robotic platforms
 - No integration of robots on the robot system level
- Goal
 - To enable robots to work on the same field performing their tasks
 - With a minimal operator workforce
 - Additional safety layers


- Introduce minimal integration of different robot systems
- Basic set of functions (Start, Stop, Pause, Resume, Status)
 - Geared towards safety
- Simple adapters for each robotic system consuming and producing data in common format -> NGSI


System Design

- Adapter for robot control system
 - For instance DJI Mobile SDK
- FIWARE platform deployed on a cloud server in Docker environment
 - Situational Awareness service Device 2 as well
- Desktop application for fleet operators to monitor all robots during operation
 - Uses MQTT to receive statuses and events

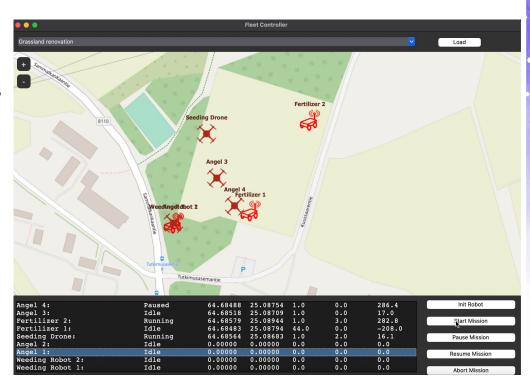
Components

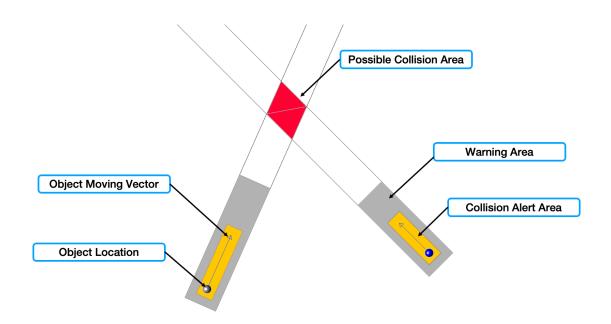
- Robot control system
- MQTT Broker
- IoT Agent
- Orion
- MongoDB
- QuantumLeap
- TimescaleDB
- Situational Awareness Service
- FleetManager

Piloting

- Drones
 - Survey drones, Surveillance drone, Spraying Drone
- Ground Robots
 - Weeding COBOT, Robot gantry, Tractor, Seeding robot, Collector robot
- Connectivity via 4G/5G
- Services running in private cloud

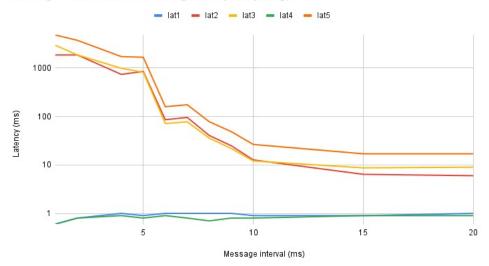
Data Model


- Simple Two entity type data modelNGSI v2 because NGSI-LD broker was
 - NGSI v2 because NGSI-LD broker was still not at the beginning of the project
- Robot –entity
 - ID
 - Location
 - Speed
 - Status
 - Heading
 - Time
- Collision
 - Location
 - Array of Robots involved
 - Time to Collision
 - Timestamp


Fleet Management

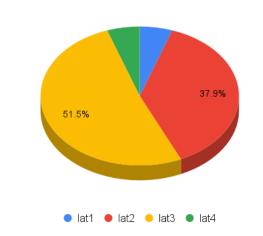
- Monitor & Control robots and drones
- Connected to FIWARE via MQTT broker and IoT Agent
- Also connected to data space

Collision Avoidance


 FIWARE application subscribing to robot statuses and calculating possible collision events

Experiences

Average Latencies vs Message Frequency (log)



- Critical factor is latency
 - Latency affects the safety margins
- With close to 10 robots, the system is still useable

- IoT Agent and Orion are responsible of most of the latencies
 - MQTT UltraLight to NGSI IoT agent consumes 37.9% of the time (lat2)
 - Orion context broker consumer 51.5% of the time (lat2)

Conclusions

- Platform build using FIWARE components is relatively easy to deploy and use
- Standard data models help in the integration
- The downside of the standard data model is the performance
 - Data conversion is heavy compared to native binary protocols
 - > This has to be taken into account in system design

Thank You!

- Question & Answers
- Kari Kolehmainen
- <u>kari.kolehmainen@vtt.fi</u>
- **+** +358 40 5330649