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Why these trends?

They help you overcome common challenges

* Models/Algorithms are too slow to run in real time
* Models are unnecessarily complex

* Models are inaccurate

* Measurements are difficult to obtain
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Al Landscape
Machine Learning vs Deep Learning vs Reinforcement Learning

Al

Deep Learning/Machine Learning

Unsupervised Learning Supervised Learning Reinforcement Learning
(No Labeled Data) (Labeled Data) (Interaction Data)
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Trend 1 Reduced Order Modelling (ROM)
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v == x.der;

f == spr_rate * x;
“2 end
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Why?!
Create faster more light weight models of High-Fidelity Physics based Models for tasks when speed is

more important than accuracy

How?
Train on simulated data from the high-fidelity model and/or real data



4\ MathWorks

Demo Description
Engine torque estimation

Engine model 10-50x faster
Overall simulation 2.5x faster
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0 L Driver

Help

Inputs

_ Outputs
Engine speed (RPM) ‘ En ing Torque
Ignition timing ) A

Throttle position
Wastegate valve

* Replacing the high-fidelity SI engine
model with Al

* Speed up model to get real-time
simulation
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Workflow

/* Function for MATLAB Function: '<SIs/MLFB" */
static real32_T DeeplearningNetwork_predictAndU(c_code
obj, const real T indata[4])
{
cell_wrap_3_demo_SL_LSTM T outT_f2[3];
cell_wrap_3_demo_SL_LSTM T outT_f2_e;
int32_T d_k;
int32_ T i;
real32 T G[42];
real32_T y[1e];
real32 T b_f1[4];
real32_T b_f1_6;
static const real32_T W[16@] = { ©.1146387723F, ©.155
©.8276211F, ©.163311467F, -©.325015634F, -@.21158%

S Integration :
DEIE Al model Simulink into system Code generation

Preparation training implementation el for HIL
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| model training

Integration
Into system

Al model
training

Data
Preparation

Simulink
implementation

Code generation
for HIL
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LIVE EDITOR

Search Documentation
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Simulink implementation of learning models

Integration :
Into system Codef Ogremel_ratlon
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Integrate into a system-level model for overall simulation

Data Al model Simulink Code generation
Preparation training implementation for HIL
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Engine Torque
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Generate code for LSTM model

S Integration :
Data Al model Simulink into system Code generation

Preparation training Implementation model for HIL
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Want to learn more??

‘MathWorkS@) Products  Solutions Academia Support Community Events

Reduced Order Modeling

Reduce the computational complexity of your models by creating accurate surrogates

Reduced order modeling (ROM) and model order reduction (MOR) are techniques for reducing the computational complexity or
storage requirement of a computer model, while preserving the expected fidelity within a controlled error. Working with
surrogate models can simplify analysis and control design.

Scientists and engineers use ROM techniques to create system-level simulations, design control systems, optimize product
designs, and build digital twin applications. MATLAB®, Simulink®, and add-on products let you build accurate ROMs using
various reduced order modeling methods.

Why Use Reduced Order Modeling?

Large-scale, high-fidelity nonlinear models can take hours or even days to simulate. System analysis and design can require
thousands or hundreds of thousands of simulations, presenting a significant computational challenge. Also, linearizing complex
models can result in high-fidelity models containing states that do not contribute to the dynamics of interest in your application.

Link to webpage Link to video

Search MathWorks.com Q

ans
Get MATLAB ‘a , amw
ans

§ Trial software  f, Contact sales

Reduced

order ‘\\ Speed up system-level
MOdEIing oo

® 1 videos

Reduced Order Modeling (1 videos)

duty cycle (d)

4\ MathWorks
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https://www.mathworks.com/discovery/reduced-order-modeling.html
https://www.mathworks.com/videos/reduced-order-modeling-applications-and-methods-1643264682176.html
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Trend 2 Al based Virtual Sensors

current .} voltage measurement
—O
Kalman
Filter
= battery
R model

estimation

voltage
=[]
I—- SOC

Why?! A physical sensor may be: |
= EXpensive

= Noisy
= Degrading over time
= Impossible to place

How? -

Train a model that can predict the wanted measurement using data from existing sensors
16
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Al based Virtual Sensors for Temperature Estimation
Use lab data to replace expensive sensors with Al based sensor

Permanent Magnet Synchronous Motor (electric motor)

Temperature Estimation

Data collected via contactless infrared sensor

Inputs Outputs

Ambient Temperature - Permanent Magnet Temperature
Coolant Temperature Stator Yoke Temperature
Voltage Stator Teeth Temperature
Current Stator Winding Temperature

Motor speed

Link to blog post .,



https://blogs.mathworks.com/deep-learning/2021/05/21/deep-learning-based-surrogate-models/?from=cn

4\ MathWorks

Workflow

fc.2

static void PHS
const real T v

n for MATLAB F ‘<S12/MER’
pLearninghetuork_predict(c_coder_ctarget_Deeplearning_T *obj,
rargin_1[98], resl3z_T varargout_1[4])

51 q

call_wrap_3_PMSMSin_T outT_f7_idy_0;

int32T k;

real3z T b_y[125];

real3z T tmp[125);

real32_T tmp_8[125];

reali2_T T[98];

reald2_T b_f1[98];

reald2_T y[98];

real32_T c_y[4l;

static const real32 T g6169] = { 0.G70897673F, -0.0277374703F, -0.113051225F,
0.154562488F, 0.9726826265F, 0.8274735242F, 9.8493374132F, 8.112217292F,

. 2.9369785955%, -6.184045361F, ©.118567255F, -0.8228224557F, B, 16795560F,
+ P .8484067798%, ©,8716527546F, -B.B433443896F, -B.168981235F, B.6938BATIEH,
R 5 8.893891874F, 8.113966363F, -9.147850385F, B.198972579F, B.135142485F,

&7 -8.8776476185F, -8.858881315F, @.8738748577F, -8.117833422F, 8.8421196F,
9.141493973F, 9.8689193457F, -8.8997701883F, -8.8926445276F, -08.152218757F,
-9.164792791F, -9.6730195045F, ©.8315301344F, ©.159413089F, -2.154582337F,

©.135217756F, -0.131523401F, -8.181185754F, ©.183414282F, -8.129908134F,
2 -0.1496434267, ©.154901505F, 0.9866299197F, ©.8511258884F, -0.8731999427F,
0.106936872F, ©.8924417302F, 9.262970221F, ©.08A9010057F, 9.110696306F,
DL-PMSMmodel 3 -0.1615480247, ©.161914587F, -0.161086291F, ©.6247278847F, -0.059070L176F,
0.144306615F, 0.176843120F, -0.0219922371F, 9.0509543415F, 0.017356311F,
b el ©.9783760548F, -0.0101056565F, ©.132538676F, -0.0135600505F, 0.147363365F,
7 -0.0181488074F, -0.108393262F, 0.0685547242F, 0.0171578846F, 8.121754757F,

e "

iwakyrelu
ieakyReluLayer

Predictors Temperatures
Temperatures

Predictors

S Integration
Data Al model Simulink into system

Preparation training implementation model

Code generation

for HW
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Al model training
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Simulink Implementation

Integration
into system
model

Data Al model

Code generation

for HW

Preparation training

4 Scope - 0 X

File Tooks View Simulation Help
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pout. PMSM

Internal temperature

predictors.mat |- P sequenceinput regressionoutput | —e 1 eMPeratures
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Code generation

Integration
Into system
model

Data Al model Simulink Code generation

for HW

Preparation training implementation

48 /* Function for MATLAB Function: '<S1>/MLFB' */

49 static void PMS_DeeplLearningNetwork_predict(c_coder_ctarget_Deeplearningh_T *obj,
5@ const real_T varargin_1[9@], real32_T varargout_1[4])

51 {

52 cell wrap_3_PMSMSim_T outT_f7_idx_@;

53 int32_T i;

54  int32_T k;

55 real32_T b_y[125];

56 real32_T tmp[125];

57 real32_T tmp_e[125];

58 real32_T T[99];

59 real32_T b_fi[9@];

60 real32_T y[99];

61 real32_T c_vy[4];

62 static const real32_T g[81ee] = { ©.970807673F, -0.82773747@3F, -0.119@51225F,

63 ©.154562488F, ©.0726826265F, ©.0274735242F, ©.0493374132F, ©.112217292F,

64 ©.0309785958F, -0.104045361F, ©.118567258F, -©.0228224597F, ©.107955806F,
65 0.0484067798F, ©.0718827546F, -0.0433443896F, -©.1688@1235F, ©.0938847363F,
66 ©.093891874F, ©.113060363F, -©.1478503685F, ©.108972579F, ©.139142409F,

67 -0.0776476189F, -0©.056881315F, ©.0730740577F, -0.117033422F, ©.0421196F,

&8 9.141403973F, ©.0689193457F, -©.0997701883F, -0.0926445276F, -0.152210757F,
69 -0.164792791F, -©.0730195045F, ©.0315301344F, ©.159413099F, -0.154582337F,
70 ©.135217756F, -©.131523401F, -©.101185754F, ©.183414282F, -0.129480134F,

71 -0.149649426F, ©.154901565F, ©.0866299197F, ©.8511259884F, -©.8731999427F,
72 0.106936872F, ©.0924417302F, ©.062970221F, ©.0885@106857F, ©.1106963038F,

73 -9.101548024F, ©.161914587F, -0.161086291F, ©.0247278847F, -0.0598701178F,
74 0.144306615F, ©.176843122F, -©.0219622371F, ©.0509543419F, ©.0173563119F,
75 ©.0783760548F, -0.9101056565F, ©.132538676F, -©.0135600995F, ©.147363365F,
76 -0.0101488074F, -©.108393282F, ©.0605547242F, ©.0171978846F, ©.121794797F,
77 ©8.0315105692F, ©.00848537777F, ©.141043633F, ©.8866781399F, -8.1356@6185F,

21
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Other use cases of Virtual Sensors?
Al based Virtual Sensors for State Of Charge Estimation

K P I -I ® Gotion

Onboard Battery Pack State of Charge
Estimation Using a Neural Network

Battery SOC and SOH
Estimation using a Hybrid
Machine Learning Approach

Link to video from Link to video from
MathWorks Automotive Conference MathWorks Automotive Conference
22


https://www.mathworks.com/videos/battery-soh-and-soc-estimation-using-a-hybrid-machine-learning-approach-1654074965428.html
https://www.mathworks.com/videos/onboard-battery-pack-state-of-charge-estimation-using-a-trained-neural-network-1654097316503.html

Other use cases of Virtual Sensors?

Al based Virtual Sensors for NOx Estimation

oail —Real data
—LSTM
08}
o7t
08
‘; 05
2

04+

03 H

02

0.1

100 200 300 400 500 600 700 800 900 1000
Time[s]

Link to article

STELENANTIS

Link to presentation

4\ MathWorks
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https://se.mathworks.com/company/newsletters/articles/using-deep-learning-networks-to-estimate-nox-emissions.html
https://se.mathworks.com/videos/applying-ai-technologies-to-vehicle-sensor-modeling-1654065326559.html

Learn more??

& MathWorks

} MathWorks

Al with Model-Based Design
Virtual Sensor Modeling

Lucas Garcia, PhD

Senior Product Manager
Deep Learning
Igarcia@mathworks.com

Video - Al with Model Based Design: Virtual Sensor Modelling

24


https://se.mathworks.com/videos/ai-with-model-based-design-virtual-sensor-modeling-1664290300551.html
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Trend 3 Reinforcement Learning based Controls

OBSERVATIONS . Agent (AI)

REWARD

ENVIRONMENT g

SIMULINK®

ACTIONS

Why?!
The system you want to control or make decisions for is highly non-linear or uncertain
Get an end-to-end solution

26



End-to-end Reinforcement Learning

Reinforcement Learning Agent

= el { ]

Measurement/

4\ MathWorks

Perception
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Automatic Parking Example

60 |
criticNetwork = [ | ok Stabs TRAN " s m s m ®m s ®Emw e m o=
- ontroller Mode
featureInputLayer(numObservations, Elepsed Time : 1.50 =
Normalization="none", ... \ —
) ’ ( = [l
Name="observations") "= B B B B ®E B B B B H B —
-37 "] 64 | 63 | 62 | B1 60 | 59 58 | 57 | 56 55 | 54 | 53 B -
fullyConnectedLayer(128,Name="fcl")
" n -35. ..‘9-
relulLayer(Name="relul") %0
e on - = =
fullyConnectedlLayer(128,Name="fc2")
40 B |17
] [ [ | [ | reluLayer(Name="relu2") __ " " ®m ®m ®m = ®m ®m = ®m ®=@® .
/ f \ 20
/ { " " / -

05 06 |y 07 08 09 fullyConnectedLayer(128,Name="fc3") -l
reluLayer(Name="relu3") =l
fullyConnectedLayer(1,Name="fc4")]; or = = = = |m = = == = = @® ®

. . . R 01 02 03 04 05 06 o7 08 09 10 1 12 13 14
criticNetwork = dlnetwork(criticNetwork); ‘.|I . l . I I I .|I|.|I‘.‘
a L L
o 10 20 30 40 50 60 70 80 90
Search MPC Tracking C Speed (m/'s)
L
> Pose Park merge —| \ehicle Pose
—»
TargetPose —‘ . | Steering (rad)
Vehicle Mode P Target  f1
b P CurrentPose  Actions Ego Vehicle Model
| Lidar
RL Controller L Pose
P Stear
| Pose Lidar | Lidar
Parking Lot Simulator
Link to example



https://se.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html
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File Edit View Insert Tools Desktop Window Help
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Jde @ 08
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60
e Staaiie s BEAREH 36 35 34 33 32 31 30 29 28 27 26 25 24 23
enicie status :
[ | [ @ S| [ | [ 5] B 3] O =] ] o !
50 = Controller Mode : MPC
Elapsed Time : 0.1s —
=
I o [
40
[ o ] =] o O ] ] ] ] ] ] ] e —
-37 B 64 463 ¢ 62 §61 60 7350 68 § BT i 56 56 'y 54 53 20 -
-38 =] I . I l W19 -
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01 02 03 04 05 06 07 08 09 10 11 12 13 14
0 | | |
0 10 20 30 40 50 60 70 80 90

100
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RL based controls

Vitesco Technologies Applies Deep Reinforcement

Learning in Powertrain Control

Challenge

Speed up development and prototyping in the face of
global climate change and to conform to more stringent
emission laws

Solution

Use Reinforcement Learning Toolbox to quickly prototype,
generate, and optimize reinforcement learning agents

Key Outcomes

= Fast prototyping of reinforcement learning agents and
reduced development time

= Use of Simulink for state-of-the-art plant modeling

= Quick start enabled through use of documentation and
examples for reinforcement learning algorithms

= Fast resolution to technical issues with dedicated calls
with MathWorks experts

Link to customer presentation

4@\ MathWorks

PRE DPF TEMPERATURE CONTROL- ©

uuuuuuu

ACCELERATED PROTOTYPING
VERALL SIMULATION DIAGRAM

= A

Simulink model incorporatin

“Reinforcement Learnil
reduced development
helped in fast prototypil
reinforcement learning
- Vivek Venkobarao, Vite;

Link to customer presentation

4\ MathWorks

A perspective on
deploying Machine
Learning to
augment classic

control design

Ali Borhan
Manager — Cummins R&T

November 5, 2020

30


https://www.mathworks.com/videos/a-perspective-on-deploying-reinforcement-learning-to-augment-classic-control-design-1605627720849.html
https://www.mathworks.com/videos/reinforcement-learning-a-motivation-for-a-powertrain-control-engineer-1603366042838.html

& MathWorks

Learn more?!

Part 1: What Is Reinforcement Learning?

= Tech Talk video series on BT e reement laring . ypeof machine leaming ot has shepotenta 10 sohe
. . 5 some really hard control problems.
Reinforcement Learning concepts
for engineers

Part 2: Understanding the Environment and Rewards

In this video, we build on our basic understanding of reinforcement learning by
exploring the workflow. What is the environment? How do reward functions
incentivize and agent? How are policies structured?

= Reinforcement Learning Onramp

Part 3: Policies and Learning Algorithms
This video provides an introduction to the algorithms that reside within the agent.
We'll cover why we use neural networks to represent functions and why you may

have to set up two neural networks in a powerful family of methods called actor-
critic.

Reinforcement Learning Onramp

Part 4: The Walking Robot Problem
This video shows how to use the reinforcement learning workflow to get a bipedal
Rg;g'-ﬁv:,kl robot to walk, and how we can set up the RL problem to look more like a traditional
control problem by adding a reference signal to the design.
This free, two-hour tutorial provides an interactive introduction to ZI' ©14:50 P Y g g g
reinforcement learning methods for control problems.

R e LR B | I ] I WA D Part 5: Overcoming the Practical Challenges of Reinforcement Learning

There are a few challenges that occur when using reinforcement learning for
production systems and there are some ways to mitigate them. This video covers
the difficulties of verifying the learned solution and what you can do about it.

Launch the course

Reinforcement Learning Onramp Video series

31


https://se.mathworks.com/learn/tutorials/reinforcement-learning-onramp.html
https://se.mathworks.com/videos/series/reinforcement-learning.html
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Trend 4 Data Synthesis

I dit  View [Inset Tools eskto) i

Eile I I Desktop
Deke @ 08RE

Leakage = 1e-09, blockage = friction = 0.00053333

"’ﬁ N -

- o
5724

2
& 7.22
I 72
7.18

-
| ‘ 7.16
714
50 100 150 200 250

Time (ms)

Why?!
When data is hard to get through lab test or otherwise

How?

Repurpose existing simulation models

Use Digital Twins to generate data to train better Al models for application deployment
33



Simulate fault data with Digital Twins

Leakage Area = [1e-9 0.034]

Bearing Friction = [0 ée-4]

4\ MathWorks

Blocking Faul

Settings

. Block Parameters: Check Valve Outlet

& vave LW3 0. 8]

*

Auto Apply @

v Parameters

[4 Figure 3 - m] X @
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4\ MathWorks

Enhance datasets for Al using Digital Twins

Challenge

Increase the performance of an automated beverage-
packaging system by incorporating a dynamic tripod robot
into the design

Solution

Use Simulink and Simscape Multibody to create an
accurate digital twin that supports design optimization, fault

testing, and predictive maintenance The Krones Robobox T-GM package-handling robot.
Results
= Robot performance increased During simulations the team injected faults, such
= Product development time shortened as extremely high friction, to analyze system

. Testing time significantly reduced behavior under fault conditions.

They then used the tripod robot model to train a
machine learning classification algorithm for
predictive maintenance.

Link to user story 35



https://www.mathworks.com/company/user_stories/krones-develops-package-handling-robot-digital-twin.html

Learn more??
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Video - Design for Predictive Maintenance:

Data Generation

4\ MathWorks
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https://se.mathworks.com/videos/model-based-design-for-predictive-maintenance-part-1-data-generation-1577962505030.html

Conclusions?

&\ MathWorks

= Many promising applications in the intersection between Al and Simulation

— Al models can be used to enhance simulation models
— Simulation models can be used to enhance Al models

= In MATLAB and Simulink you can use one toolchain to do both Al and

Simulation with seamless interaction in-between

—

Planning/
Scheduling

|
\

Control

—

Measurement/
Perception
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Thank You!

= Questions? aloytyno@mathworks.com

& MathWorks
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