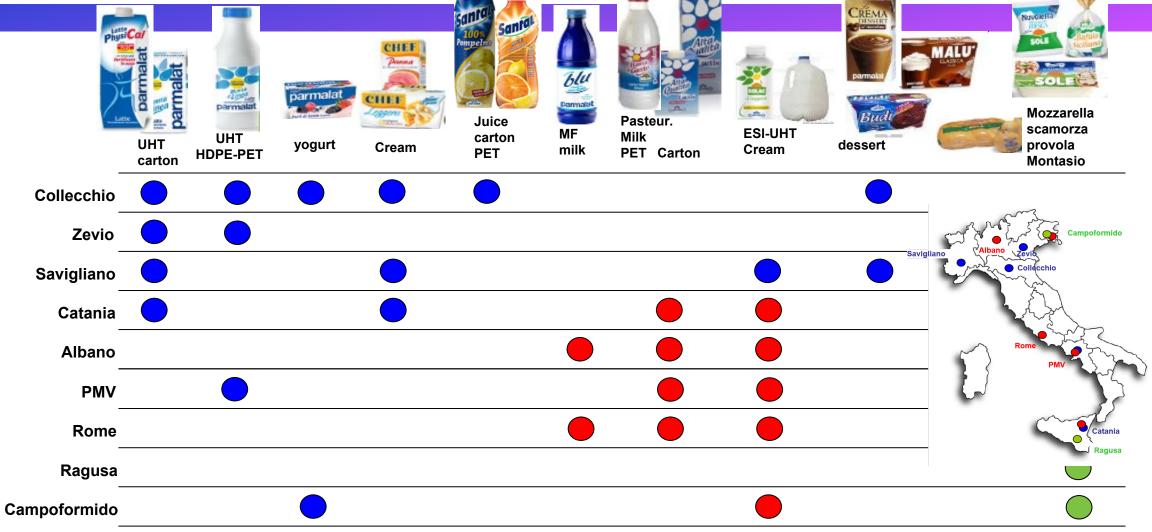


Towards AI powered manufacturing services, processes, and products in an edge-to-cloud-knowlEdge continuum for humans


Pilot 1 – Intelligent scheduling of production
FIIF event
14.03.2024

Parmalat Italy Operation: products/ plants matrix

Collecchio Plant

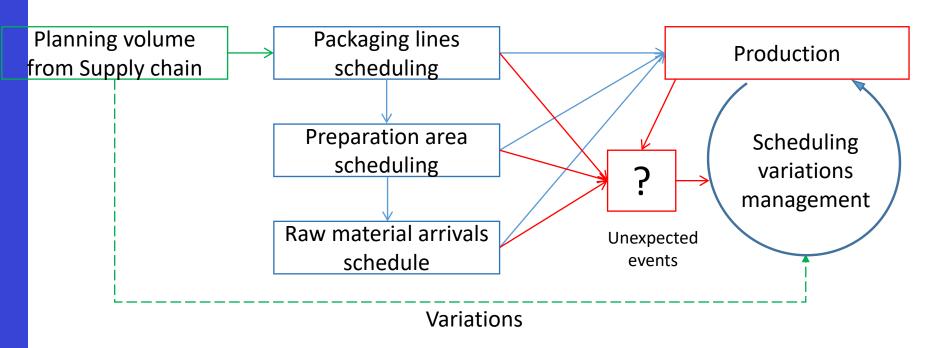
Totale Area

Totale Covered Area

Warehouse (Distrib Center)

143.000 m²

45.000 m²


29.000 pallets

Current situation

cheduling process

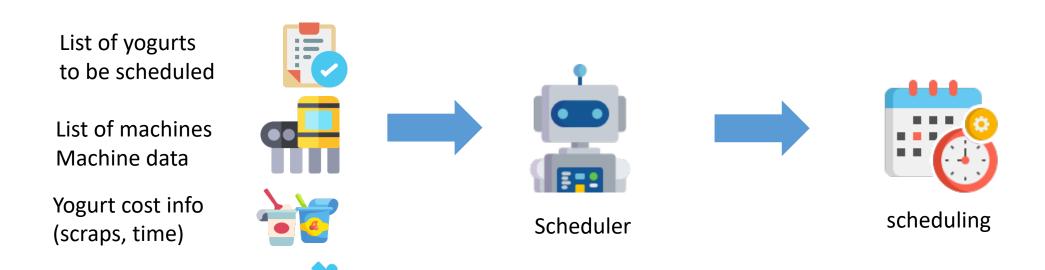
The process of scheduling packaging lines with a finite capacity has many constraints and requires a lot of knowledge for operations to proceed at an efficient and possibly leveled pace within the plant, in order to eliminate bottlenecks and organize resources in the best possible way.

- SINAPSI is used to support the scheduling process, but all the constraints and optimizations are managed by human being
- Difficult to swiftly react to unexpected events

KnowlEdge Contribution

- Our expectation is to create a **finite capacity scheduling tool**, able to optimize production sequences respecting constraints and limits of the entire production process, improving efficiencies and reducing losses.
- The connection with the field data and their analysis will offer a **realistic model of the production plant**, allowing to recognize in **real time the limits** of the plant's production capacity and therefore to react more promptly to changes.
- Through the use of AI technologies we would like to be able to carry out predictive simulations reducing human input to a minimum (prediction of demand for capacity planning)
- Provide convenient and intuitive real-time visualisation tools

What-if Production Scheduling


Parmalat Al-Scheduler

Compatibilities

yogurt-machine

The goal is to generate a production plan given a set or orders.

Overview

- The plan minimizes the money loss generated by the scraps for fruit and mix yogurt types and the time from changing fruits.
 - Yogurt quantities are computed in minutes of work using the kg and the speed of machines
 - When starting an order, it starts on a single machine and does not stop until it is finished.
 - Yogurt quantities are converted to the corresponding money loss
 - The sum of the different money losses is minimized

```
include "alldifferent except.mzn";
 % COMMON HEADER, probably independent of modelling
enum MACHINE;
5 enum YOGHURT_TYPE;
array[MACHINE, YOGHURT_TYPE] of bool: compatibility; % Whether a machine can pro
7 array[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: clean_machine_time; % How lor
sarrav[MACHINE, YOGHURT_TYPE] of int: yoghurt_speed; % Assuming yoghurt_speed rep
0% Parmalat constraints
larray[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: kg_fruit_change; % kg of scra
2 array[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: kg_mix_change; % kg of scrap
array[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: monetary_kg_fruit_change;
4 array[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: monetary_kg_mix_change;
sarray[MACHINE, YOGHURT_TYPE, YOGHURT_TYPE] of int: monetary_time_fruit_change;
6%array[MACHINE, YOGHURT TYPE, YOGHURT TYPE] of float: monetary kg raw change;
7%arrav[MACHINE, YOGHURT TYPE, YOGHURT TYPE] of int: kg raw scraps: % kg of scra
9% Different orders with different amounts requested and time to deliver (before
ø int: num orders:
iset of int: ORDER = 1..num_orders;
2 array[ORDER] of YOGHURT_TYPE: order_type;
3 array[ORDER] of int: yogh_minutes; %yoghurt - free time unit
4 array[ORDER] of int: deadline;
```

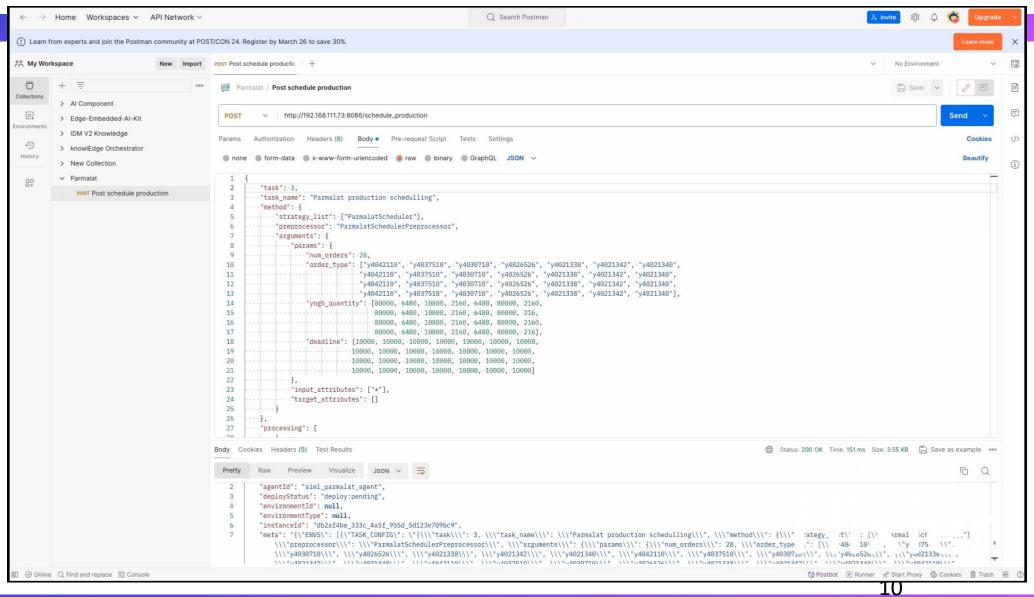
Snapshot of the model

Model Output

•••

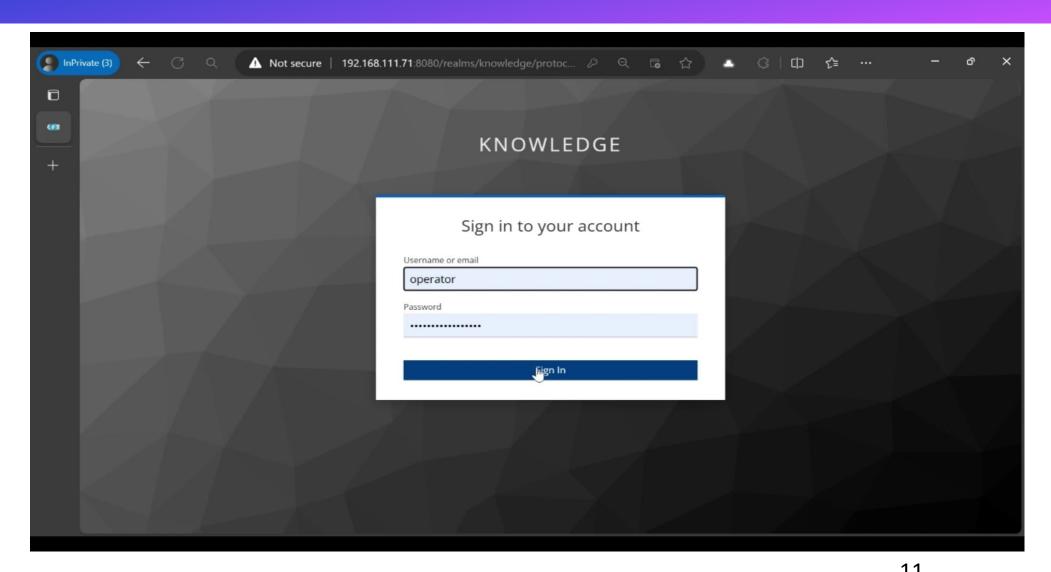
List of solutions sorted by loss

Per each solution:


- Per each machine:
 - List of assigned yogurt order, time start, time end
- Loss

start time: [7657, 106, 6204, 6908, 6483, 285, 5699, 1097, 5735, 7193] end time: [7876, 144, 6234, 6964, 6660, 669, 25] 1274, 6119, 7194] workers: [COMAN, HAMBA6, COMAN, ILPRA, HAMBA7, HAMBA6, COMAN, COMAN, HAMBA6, COMAN, ILPRA, HAM Loss value: 48.0 start time: [6659, 7905, 7704, 6624, 9496, 1394 [5392, 6874, 5399, 4945] end time: [6878, 8082, 7734, 6630, 9534, 1778, 5448, 6912, 5783, 4946] workers: [COMAN, HAMBA7, COMAN, COMAN, HAMBA6, HAMBA4, COMAN, COMAN, HAMBA7, COMAN, ILPRA, HAM Loss value: 47.0 start time: [9692, 7277, 5616, 8553, 6163, 608, [2270, 2988, 2524, 6560] end time: [9911, 7454, 5646, 8609, 6195, 1066, 2326, 3020, 2982, 6561] workers: [COMAN, HAMBA7, COMAN, ILPRA, HAMBA4, HAMBA6, COMAN, COMAN, HAMBA7, COMAN, ILPRA, HAM Loss value: 0.0

Example of direct output from the model (* no postprocessing included


Demo

Monitoring and Proactive Reaction to Events

Impact

KPI	Goal
Scheduling hours	Decrease time devoted for production planning or scheduling.
Yogurt OEE	Improve the theoretical OEE of yogurt production
Response time	Time to create a new production plan responding to real- time changes/variations based upon real-time data will decrease more than 50%
Productivity	Decrease the number of man hours needed to produce one ton of product
Downtime	Decrease the time of downtime and setups
Scrap	Decrease the amount of scrap