Europe's AI flagship

SILOGEN

Specialized large language models (LLM)

October 2023

Aarne Talman Head of Technology, SiloGen

- Natural language processing (NLP) researcher and leader with 20 years of industry experience.
- Worked in software development, product management (search engines), management consulting, academic research and technology leadership positions.
- Visiting Researcher in Language Technology at University of Helsinki.
- Academic research focuses on natural language understanding.
- Currently leading Silo AI's generative AI and LLM technology development at SiloGen.

SiloGen is positioned to be a leader in GenAI...

SILO AI LAYS THE FOUNDATION ...

6	COUNTRIES	Europe's largest priv
10	OFFICES	Unique team of 300
300+	AI EXPERTS	and AI scientists/enį incl. NLP & LLMs
150+	PHDS	Trusted AI partner to leading companies a
200+	PRODUCTION- LEVEL AI	world
		Data-centric AI deve

vate Al lab + PhDs

gineers,

o industry across the

elopment platform

... FOR EUROPE'S **GenAI FLAGSHIP**

Team with experience to build end to end LLMs, product and scale operations

Developing leading open multilingual language models on LUMI supercomputer

Family of specialized LLMs

LLM platform to finetune & deploy LLMs

"ChatGPT is the 2 minute trailer for the 50 year movie, most of the plot is not shown yet"

GenAI NARRATIVE

GenAI narrative: This time is different?

Large language models (LLM) create value as part of (software) products

Enterprise

- ERP/CRM search
- Al Assistant

Media

- Media search
- Create & monitor content

Legal

- Legal co-pilot
- Compliance & regulatory monitoring

Finance & insurance

- Market analysis & research
- Service for investment advice

Healthcare

- Medical co-pilot
- Personal health advisor

Industrial

- Field services co-pilot
- Customer service chat-bots

Current generic LLMs aren't trustworthy enough to be deployed into products

High amount of content errors

Computationally inefficient

Current LLMs

Not effective in all languages

Regulation & data security

Lack of domain

specificity

Highlighting the need for trustworthy and reliable specialized models

We are already seeing a lot of public discussion and news coverage about LLM failures

"Snapchat tried to make a safe AI. It chats with me about booze and sex." Washington Post, Mar '23

"Plagued with errors: A news outlet's decision to write stories with AI backfires," CNN, Jan '23

"Mozilla pauses error-prone AI Explain feature in MDN," The Register, Jul '23

"National Eating Disorders Association takes its AI chatbot offline after complaints of 'harmful' advice," CNN, Jun '23

"Lawyer used ChatGPT in court - and cited fake cases. A judge is considering sanctions," Forbes, Jun '23

"Google shares lose \$100 billion after company's AI chatbot makes an error during demo," CNN, Feb '23

Current LLMs are not compliant with European regulation

Grading Foundation Model Providers' Compliance with the Draft EU AI Act

Source: Stanford Research on Foundation Models (CRFM), Institute for Human-Centered Artificial Intelligence (HAI)

	(S) OpenAI	🕿 cohere	stability.ai	ANTHROP\C	Google	BigScience	🔿 Meta	Al21 labs	X ALEPH ALPHA	Eleuther Al	
Draft AI Act Requirements	GPT-4	Cohere Command	Stable Diffusion v2	Claude	PaLM 2	BLOOM	LLaMA	Jurassic-2	Luminous	GPT-NeoX	Totals
Data sources	• • • •	$\bullet \bullet \bullet \circ$		0000	$\bullet \bullet \circ \circ$			0000	0000		22
Data governance	••00	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	$\bullet \bullet \bullet \circ$		$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \bullet \circ$	19
Copyrighted data	0000	0000	0000	0000	0000	$\bullet \bullet \bullet \circ$	0000	0000	0000		7
Compute	0000	0000		0000	0000			0000	• 0 0 0		17
Energy	0000	$\bullet \circ \circ \circ$	$\bullet \bullet \bullet \circ$	0000	0000			0000	0000		16
Capabilities & limitations		$\bullet \bullet \bullet \circ$		• • • •		$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	$\bullet \bullet \circ \circ$	• • • •	$\bullet \bullet \bullet \circ$	27
Risks & mitigations	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	$\bullet \circ \circ \circ$	• 0 0 0	$\bullet \bullet \bullet \circ$	••00	• • • •	$\bullet \bullet \circ \circ$	0000	• • • •	16
Evaluations		$\bullet \bullet \circ \circ$	0000	0000	••00	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	• • • •	• • • •	15
Testing	$\bullet \bullet \bullet \circ$	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \circ \circ$	$\bullet \bullet \circ \circ$	0000	• • • •	0000	0000	10
Machine-generated content	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	0000	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	0000	$\bullet \bullet \bullet \circ$	$\bullet \circ \circ \circ$	$\bullet \bullet \circ \circ$	21
Member states	$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \circ \circ$		0000	0000	0000	• • • •	0000	9
Downstream documentation	$\bullet \bullet \bullet \circ$			0000			$\bullet \bullet \circ \circ$	0000	0000	$\bullet \bullet \bullet \circ$	24
Totals	25 / 48	23 / 48	22 / 48	7 / 48	27 / 48	36 / 48	21 / 48	8 / 48	5 / 48	29 / 48	

Current LLM developers are not Transparent

Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023

Source: 2023 Foundation Model Transparency Index

		🔿 Meta	BigScience	🕼 OpenAl	stability.ai	Google	ANTHROP\C	s cohere	Al21 labs	Inflection	amazon	
		Llama 2	BLOOMZ	GPT-4	Stable Diffusion 2	2 PaLM 2	Claude 2	Command	Jurassic-2	Inflection-1	Titan Text	Average
	Data	40%	60%	20%	40%	20%	0%	20%	0%	0%	0%	20%
	Labor	29%	86%	14%	14%	0%	29%	0%	0%	0%	0%	17%
	Compute	57%	14%	14%	57%	14%	0%	14%	0%	0%	0%	17%
λ:	Methods	75%	100%	50%	100%	75%	75%	0%	0%	0%	0%	48%
areno	Model Basics	100%	100%	50%	83%	67%	67%	50%	33%	50%	33%	63%
Major Dimensions of Transparency	Model Access	100%	100%	67%	100%	33%	33%	67%	33%	0%	33%	57%
	Capabilities	60%	80%	100%	40%	80%	80%	60%	60%	40%	20%	62%
	Risks	57%	0%	57%	14%	29%	29%	29%	29%	0%	0%	24%
Dimer	Mitigations	60%	0%	60%	0%	40%	40%	20%	0%	20%	20%	26%
ajor [Distribution	71%	71%	57%	71%	71%	57%	57%	43%	43%	43%	59%
Σ	Usage Policy	40%	20%	80%	40%	60%	60%	40%	20%	60%	20%	44%
	Feedback	33%	33%	33%	33%	33%	33%	33%	33%	33%	0%	30%
	Impact	14%	14%	14%	14%	14%	0%	14%	14%	14%	0%	11%
	Average	57%	52%	47%	47%	41%	39%	31%	20%	20%	13%	

The Solution

-

THE SOLUTION

Our approach to trustworthy, reliable and private LLMs for industrial use cases

High quality and compliant base models that cover multiple languages

Base Models

Specialization

Specialization of base models to specific domains and industries **through fine tuning** with domain specific data

Controls

Complement specialized LLMs with **retrieval augmented generation** (RAG), controls and guardrails

12

Evolution of Large Language Models

SiloGen base models - Multilingual LLMs pre-trained from scratch (coming early next year)

- Developed in collaboration with TurkuNLP
- Trained on LUMI supercomputer
- Support for all the European languages
- Data collected in the EU funded HPLT project
- Trained with large amount of data (over 2.4T tokens)

Model size (parameters)	Tokens	Comparison
7B	2.4T	2T tokens (7B LLaMa 2)
15B	2.4T	2T tokens (13B LLaMa 2)
30B	2.4T	2T tokens (34B LLaMa 2)
60B	2.4T	2T tokens (70B LLaMa 2)
120B	4.8T	366B tokens (174B BLOOM)

Specialization improves model accuracy while being more cost efficient and trustworthy

Accuracy

- Specialization on a particular domain makes an LLM **produce better responses**
 - 20 %-point increase on medical QA [Singhal et al., 2023]
 - Up to 40% improvement on coding tasks [Rozière et al., 2023]

Cost & Efficiency

- in-win-win: smaller, better, cheaper models
 - 16B code-specialised model improves by 14% over PaLM 540B on coding tasks [Li et al., 2023]
 - From 22% to 89% accuracy on SQL Generation (vs 79% accuracy for GPT4) [source]

Alignment

- Specialization steers models to make them more **helpful**, **honest**, and **harmless (HHH)**
 - Responses from a 1.3B model fine-tuned with HF is preferred to a 175B model [Ouyang et al., 2022]
 - Aligning models with HHH does not come at the cost of accuracy [Bai et al., 2022]
 - Fine-tuning improves significantly on dialogue quality + safety + groundedness [Thoppilan et al., 2022]

Example: Technical documentation co-pilot

- How to use QUrlQuery removeQueryItem() method?
- ŝ

2

Based on the provided sources, the `removeQueryItem()` method of `QUrlQuery` can be used to remove a query item from a URL. The method takes a `QByteArray` key as an argument, which is the name of the query item to be removed.

Here's an example of how to use the `removeQueryItem()` method:

с

🗂 Copy code 🕁

QUrlQuery query; query.addQueryItem("key1", "value1"); query.addQueryItem("key2", "value2");

// Remove the query item with key "key1"
query.removeQueryItem("key1");

// Print the updated query string
qDebug() << query.query();</pre>

In this example, the `removeQueryItem()` method is called with the key "key1", which removes the corresponding query item from the URL. The updated query string is then printed to the debug output.

Example customer cases

Customer services BPO	Healthcare software vendor	Data analytics company	Global asset management company
Customer Services LLM	Healthcare LLM	Custom LLM for code generation	Custom LLM for finance use cases
IP & Patent database startup	Media company	Research company	NextGen intranet startup
LLM for patent search	LLM for media search	LLM for content creation	LLM for generating intranet site design

Aarne Talman

aarne.talman@silo.ai +358 40 871 8712 https://silo.ai

