

FoF Optimization: Human and Process Perspectives

• 09/06/2022

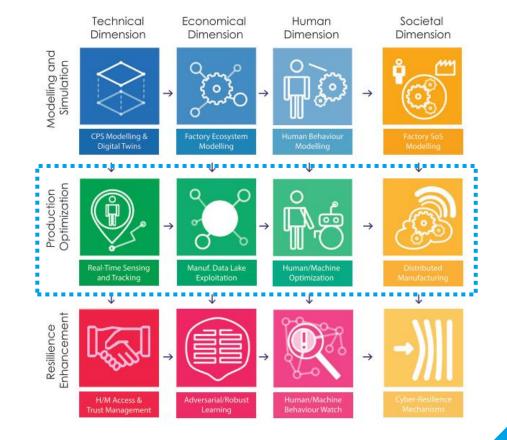
Diogo Santos | diogo.santos@sistrade.com

Agenda

- 1. Work Package Context and Objectives
- 2. Key Capabilities
- 3. Portuguese Consortium
- 4. Capability Description and Developments
- 5. Integration
- 6. Results
- 7. Conclusion
- 8. Future Horizons

Work Package Context and Objectives

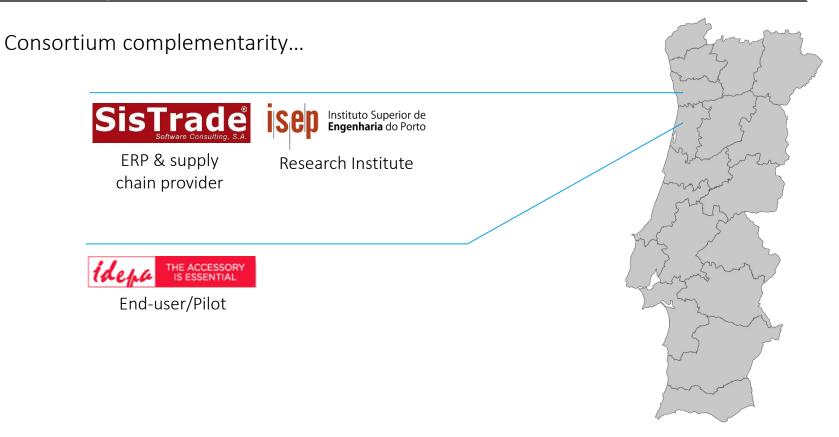
CYBER FACTORY NO.1


- One of the main technical workpackages of the project
- Solve complex, yet concrete, management problems at manufacturing shopfloors:
 - (O1) Understand the human dimension of work (mood, tiredness, efficiency, security...)
 - (O2) Efficiently organize the production in distributed manufacturing environments
 - (O3) Efficient energy consumption diagnosis and prognosis
 - (O4) Network intrusion detection and mitigation

Work Package Context and Objectives

To tackle these problems, the following capabilities were developed:

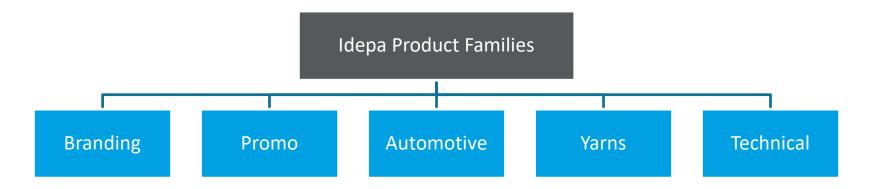
- RT sensing & tracking
- Data lake Exploitation
- Human/Machine Optimization
- Distributed Manufacturing


(At least) 1system/capability was developed within the portuguese consortium

CYBE

Portuguese Use Case

Portuguese Use Case


Idepa - Indústria de Passamanarias

- Portuguese SME | Textile Fine Fittings | Acesssories for Brand Value
- Well established | 50 years of history
- Production Models | Stock | Build-to-order
- Wide Range of Processes | Warp and Weft | Jacquard Weaving | Ratière Weaving | Dyeing | Printing | Cut and Finishing
- Good Ol'European Manufacturing | Remanescent of the 1st industrial Revolution | European Know-how

Portuguese Use Case

(Cap41) RT Sensing & Tracking Capability

Capability Objective: Extend tracking and geolocation to materials, people, smart manufacturing assets and finished goods; provide data for the situational awareness of the whole process, entities and environment;

Capability Developments:

- Shopfloor analysis (existing machines and sensorization maturity level)
- Data aquisition layer (with schema specification)
- Energy Analysers
- SmartIOT Hub

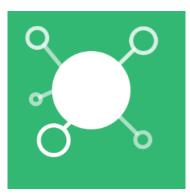
Real-Time Sensing and Tracking

(Cap41) RT Sensing & Tracking Capability

SmartUX is a tool for automatic and non-intrusive Human-machine data collection

- Monitors and continuously gather usability metrics
 - Page Visits
 - Number of Clicks
 - Distance Travelled
 - Exit and Bounce Rates
 - Performance Data
- Allows misusing detection
- Integrated interface
- Anonymous data collection

Smart 🕮	🖲 General 🛛 😫 Users	🎍 Interaction	Performance	🛯 Devices 🛛 🏷 Graph			III Sistrade
30.04.2022 - 06.06.2022 X 📾 💿 Browser				Page	Device Type	Ø	
			2	00 Page Load Times 1400 00 Page Load Times 1400 00 1000 1002 0 1023ms			
AVERAG	GE LOAD TIMES	Browser		verage Load Time		Quantity of Pages	
Page		Firefox	428m 1.42s			20 30	
Browser		Browser		rage Load Time		30 Quantity of Pages	



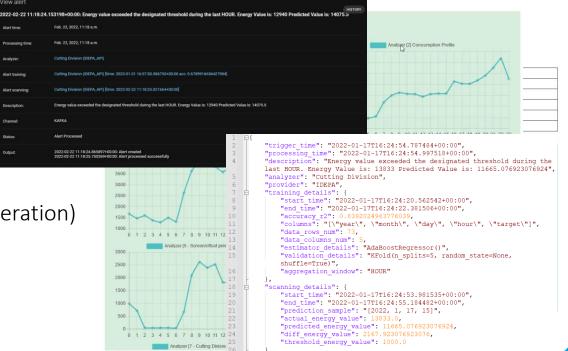
(Cap42) Data Lake Exploitation Capability

Capability Objective: Enabling of opportunities to build new business opportunities based on big data analytics over the manufacturing data thread

Capability Developments:

- Data Lake
- Energy Consumption (diagnosis and prognosis)
- Human Emotional and Physical Behavior Detection
- Network Intrusion Detection
- IoT Sensing

Manuf. Data Lake Exploitation



(Cap42) Data Lake Exploitation Capability

CyberFactory#1 Energy Forecasting Tool aims at providing a multifunctional tool to perform forecasting for power generation/consumption using different algorithm.

- Consumption profiling (sections/machines)
- Day-ahead forecasting
- Anomaly Detection (alarm generation)

(Cap43) Human/Machine Optimization Capability

Capability Objective: Optimization of human / machine collaboration on the shop-floor

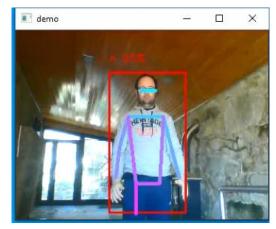
Capability Developments:

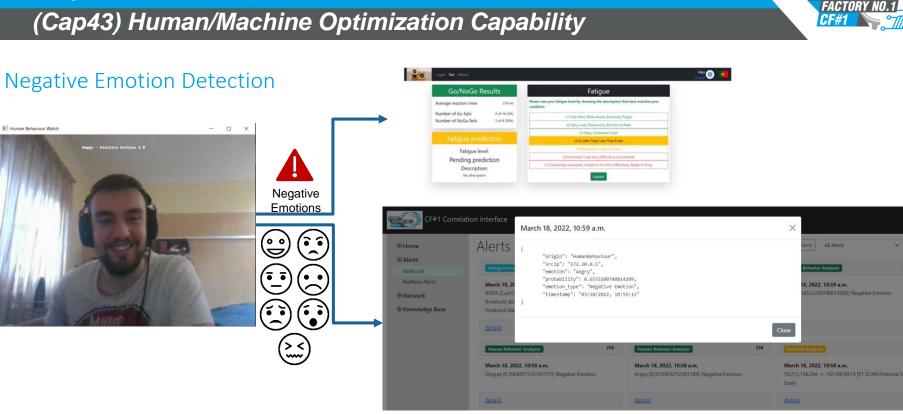
- Human Pose Detection
- Human Recognition
- Facial Recognition

Human-Machine Optimization

(Cap43) Human/Machine Optimization Capability

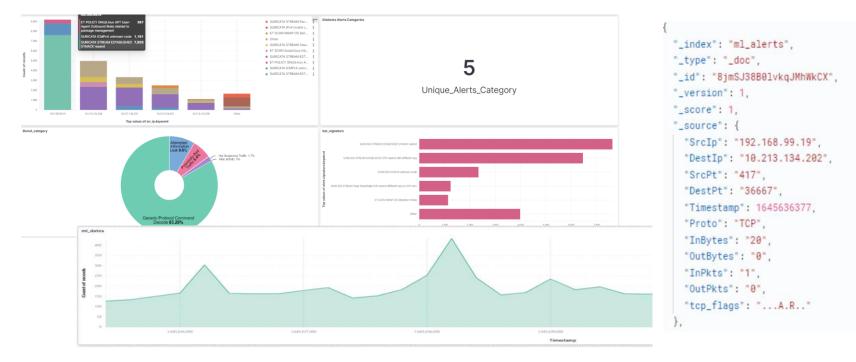
CYBER FACTORY NO.1


Emotion Detection



Human Recognition

Human Pose Detection


260

256

CYBE

(Cap43) Human/Machine Optimization Capability

Network Analyser

CYBER

CF#

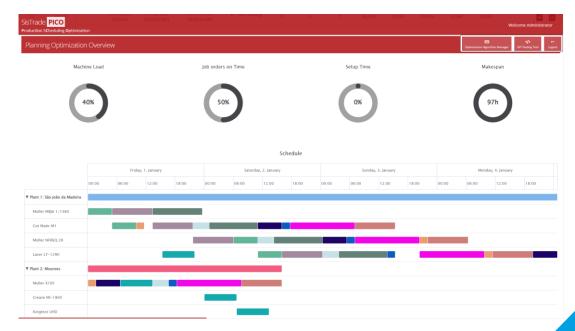
(Cap44) Distributed Manufacturing Capability

Capability Objective: Distributed manufacturing capability: enabling to optimize the distributing of production load over a network of factories or fab-labs in real time

Capability Developments:

• Cloud based service scheduling of distributed production

Distributed Manufacturing

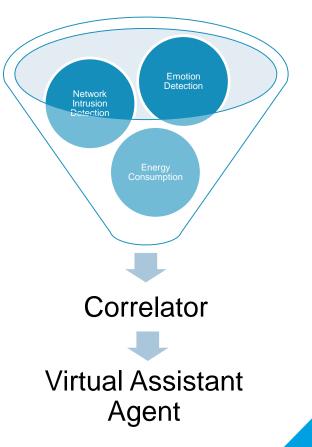


(Cap44) Distributed Manufacturing Capability

PICO is a distributed production scheduling optimization API, with multi-factory representation, multi-domain and multi-criteria decision making

- Scheduling and multi-site shopfloor data exchange
- Multi-criteria optimization
- Automatic optimization features (algorithms/parameters)

Optimized plan (gains comparison)



Portuguese Use Case - Integration

- SmartUX was installed on the IDEPA's ERP systems
- The Data Aquisition Layer was connected to the IOT infrastructure
- Energy analysers were installed in all shopfloor sections
- Intrusion Detection System (IDS) was deployed to the IDEPA's network
- PICO API was exposed and connected to the IDEPA's schedulling module
- Correlator and Virtual Assistant Agent (VAA) modules were developed to assist in the integration of the previous modules

Portuguese Use Case - Integration

- Integration steps:
 - All the anomalous events detected are merged by the Correlator
 - The Correlator computes an event that it is sent to the Virtual Assistant Agent (VAA)
 - The VAA can trigger notifications or actions

Portuguese Use Case - Results

From (Pre-Project)	To (Post project)	How CF#1 provide value
Selling products	Selling products + associated data services + Innovative Billing Models	Data Lake Exploitation Data as base for additional services
Data used for monitoring status	Data used to drive better production and management decisions (+efficiency and Resilience, - cost)	Predict Energy Consumption Distributed Optimization Predict Human Emotions and Status
Manual efforts to ensure customer IP Protection	Ai-Driven cybersecurity to ensure Customer IP protection	Detect Cyberthreats at network-level Detect misuse at ERP level Facilitate role Management Automate Response
Don't know how internal systems are used	Know how internal systems are used	Detect Cyberthreats at network-level Detect misuse at ERP level
Few Cybersecurity mechanisms and awareness	Enhanced Cybersecurity Mechanisms, increased self-awareness	Facilitate Role management Facilitate adoption of cybersecurity policies and technologies

Portuguese Use Case - Results

Objective	Metric
Services integrated into the deployed solution	Energy Consumption Prediction; Human behavior analyser; Intrusion Detection System;
Distributed Production Schedulling improvements in production time reduction	Average 37%
Emotion recognization model accuracy	Average 70%
Integration with existing enterprise management plataforms and variables	60 metrics

Portuguese Use Case - Results

Distributed Manufacturing

GYBE

Conclusion

- Achieved step changes in the production efficiency;
- Synergetic effect: Integrated with the resilience capabilities for full synergy extraction (stay tuned for the next presentations!);
- Project developments were key to the transition from a product-driven business to a data-driven service;
- Proven that traditional european industries can fully benefit from smart manufacturing approaches improving its efficiency and competitiveness;
- The breadth of the developments done could only be carried on through an open innovation initiative (such as CF#1).

Future Horizons...

- Increase data aquisition to enable further data lake exploration (e.g. Product quality correlation with environmental and production settings);
- Improvements in user profilling to improve worker condition and satisfaction (i5.0);
- Collaborative IDS with AI Federated Learning;
- Integration of energy forecast with weather forecast for fotovoltaic production and production schedulling for enhanced energy cost reduction and sustainability;
- Dynamic distributed production scheduling with realtime transport cost and material availability data fusion.

Thank you!

Diogo Santos | diogo.santos@sistrade.com

