

Progress built on 220 years of industrial history

From cloth making to high-tech processes

1797 1841 1856 1858 1860 1868	Jokioisten Verkatehdas Götaverken Tampella Beloit KMW Sunds Defibrator	1942 Rauma- Raahe 1951 Valmet	1968–1996 Several M&As: 1986 KMW 1987 Wärtsilä paper finishing machinery 1992 Tampella Papertech	1999 Metso created through merger of Valmet and Rauma	Acquisitions 2000 Beloit Technology 2006 Kvaerner Pulping Kvaerner Power 2009 Tamfelt	End of 2013 Demerger to Valmet and Metso	Metso Process Automation Systems to Valmet	Valmet acquires GL&V and J&L Fiber Services Inc	2020 Valmet acquires PMP Group	2021 Valmet acquires EWK Umwelt- technik and ECP Group
--	--	---	--	--	--	---	--	--	--	--

This is Valmet

- Market's widest offering combining process technologies, services and automation
- Research and development spend EUR 75 million in 2020

Market leadership

 Leading market position in all markets

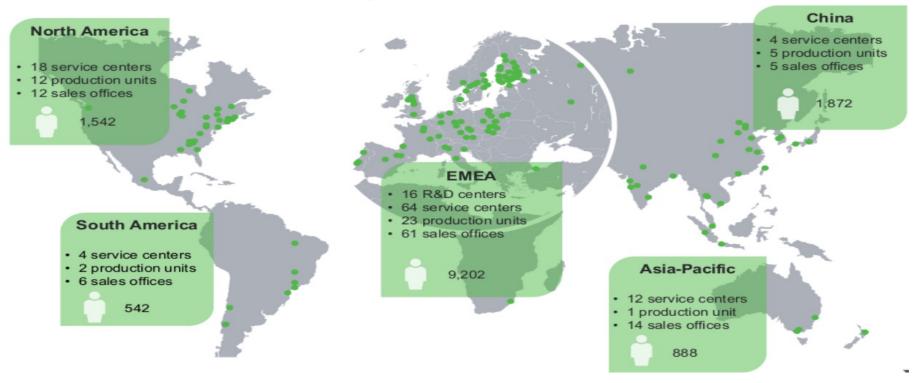
all Illainets	
 Pulp 	#1-2
 Energy 	#1-3
 Board 	#1
 Tissue 	#1
 Paper 	#1

Services #1–2Automation #1–3

Strong global presence

- · Approx. 100 service centers
- 98 sales offices
- 43 production units
- 16 R&D centers
- 14,000 professionals

EMEA	9,200
China	1,900
North America	1,500
Asia-Pacific	900
South America	500


Leader in sustainability

- Eight consecutive years in Dow Jones Sustainability Index
- Highest ranking in Ecovadis sustainability assessment
- B rating in CDP climate program 2021

Strong global presence is a good platform for growth

100 service centers, 98 sales offices, 43 production units, 16 R&D centers

Valmet Offerings by business lines

Paper

- · Recycled fiber lines
- · Tailor-made board and paper machines
- · Modularized board and paper machines
- Tissue production lines
- · Modernizations and grade conversions
- · Standalone products

tec nology

Pulp and Energy

- · Complete pulp mills
- · Sections and solutions for pulp production
- · Multifuel boilers
- · Biomass and waste gasification
- · Emission control systems
- Biotechnology solutions e.g. for producing bio fuels

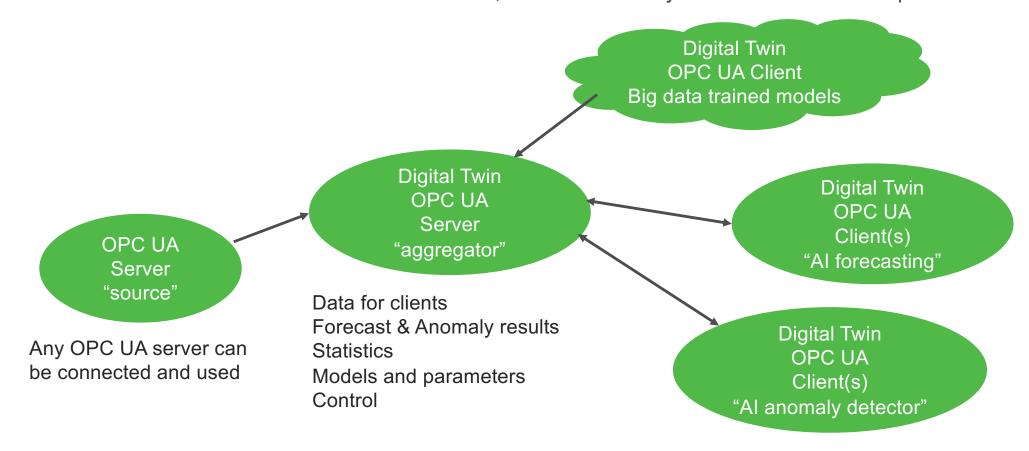
Services

- · Spare and process parts
- Workshop and roll services
- Fabrics
- Maintenance development and outsourcing
- · Field services
- Process upgrades
- · Industrial internet solutions

Automation

- · Distributed control systems
- · Industrial applications
- Quality management
- · Analyzers and measurements
- · Industrial internet solutions
- Automation services

Focus in customer benefits


Digital Twin for Industry

- Easy to install & configure, can be run on site or on cloud, flexible architecture
- Digital Twin Server:
 - Aggregate values
 - Provide historical access to data
 - Digital Twin Alarms for Anomalies
 - Forecast & other results will be stored to server
- Digital Twin Client for forecasting, anomaly detection & regression:
 - Run model: train/fit/predict according data from the Digital Twin Server
 - Write back forecast, accuracy & error
 - Raise: Anomaly detection alarm
 - Implementation with Python / Javascript / other suitable programming language
 - Keeps/hides algorithm/model inside client code

Digital Twin OPC UA based architecture

OPC UA as enabler: HA communication for data, A&C for anomaly & UA file for model & parameters

AISA Demo phases

- Phase 1:
 - Server client infrastructure working
- Phase 2:
 - Clients updating predictions / anomalies to server
- Phase 3:
 - Pretrained models for industry?
 - Federated learning
 - Template for Digital Twin client
 - Forecast
 - Anomaly detector
 - Multivariable regression

Digital Twin – RNN forecast

Findings: TensorFlow (JavaScript)

- First initial training time consuming => run predictions with created model
 - From 40s training -> less than 100ms prediction time
- Re-train model, interval 300s
 - If prediction error with real measurement too big => force re-training
 - In practice NOT USABLE
- RNN parameters needed for each instance
 - General parameters are not matching well => tuning needed for each
 - IDEA: Pre-defined parameters for specific measurements in industry
 - IDEA: Pre-trained models for industry
- TODO:
 - Anomaly detector (Autoencoder first, but it will be not enough, some classification will be needed)
 - Multi-variable regression for complex predictions

Digital Twin Server – OPC UA based management

Aggregate values from the other server

- Address space build for Digital Twin
- Constructed from the configuration
- For the Digital Twin clients variables (nodeld + suffix):
 - _detector == Anomaly detection (connected to A&C alarm object)
 - forecast == Predicted value
 - last trained == Last training time
 - _ load_model == Request from server to client to load model file (pkl)
 - _ load_params == Request from server to client to load parameter file (jsonc)
 - status == Client can report status
 - _prediction_time == Execution time to make new prediction
 - _ training_time == Execution time to train model
 - model == Model file
 - params == Parameter file
 - dataset == Dataset (csv)

Address Space

☐ Root
✓ ☐ Objects

No Highlight

Aliases

✓ i=1001

옳 Digital Twin Alarms 🗀 Digital Twins

Anomaly detector
 Forecasted value

Load params

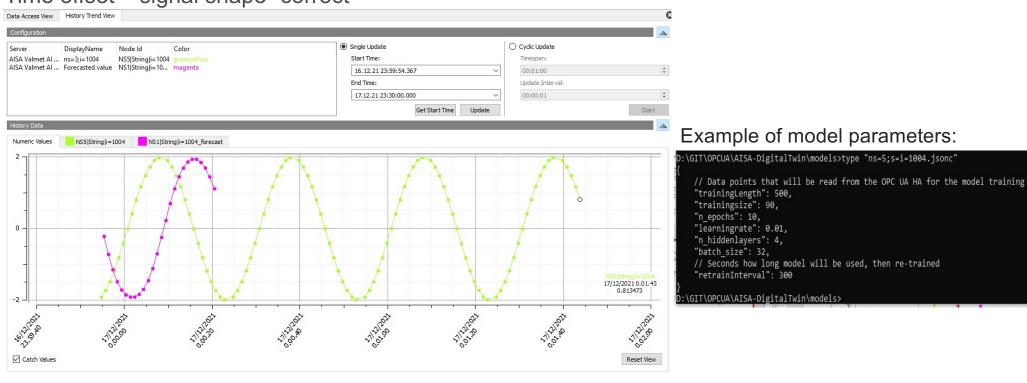
Last trained (Date)

Prediction status

Retrain model Training time (s)

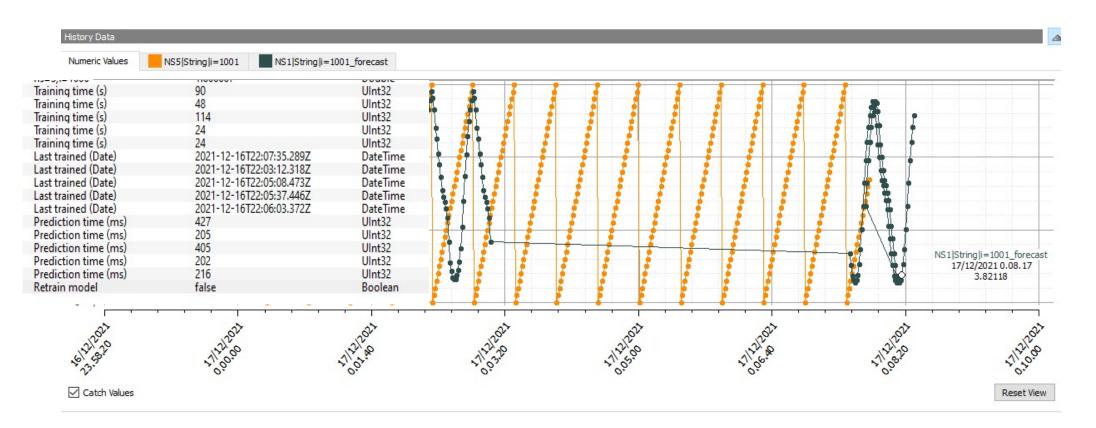
🖧 i=1001_dataset 🕰 i=1001_model

i=1001_params


Prediction time (ms)

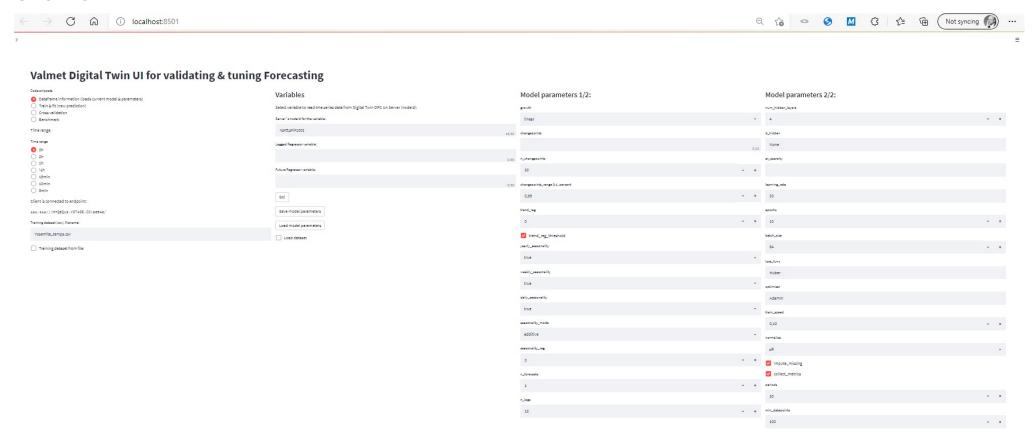
₽×

Forecast – First test client


Time offset – signal shape "correct"

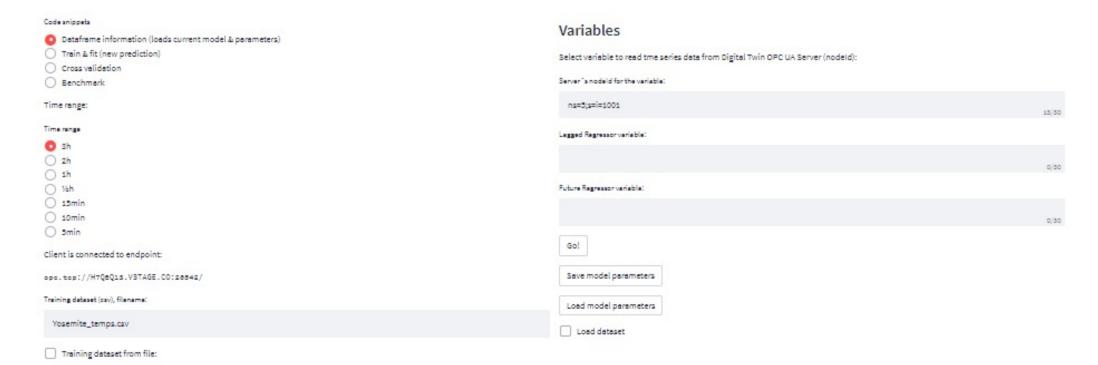
Retrain model – interval OR by retrain request

If model does not match to signal shape – add training data or other parameters

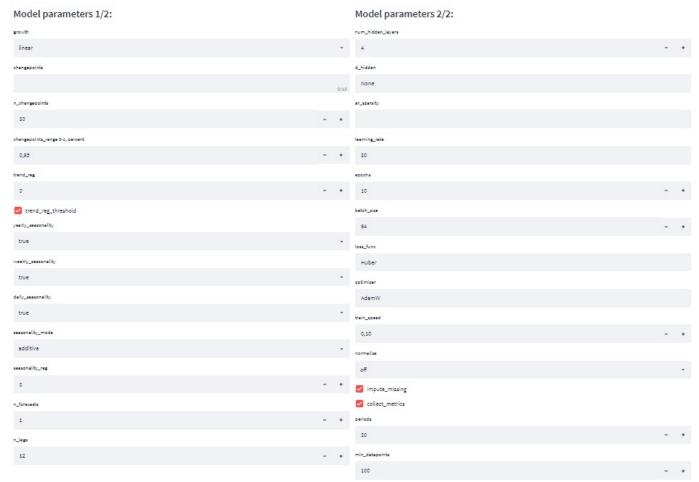

Performance – just some thousands of data points

Digital Twin client will write back to server statistics

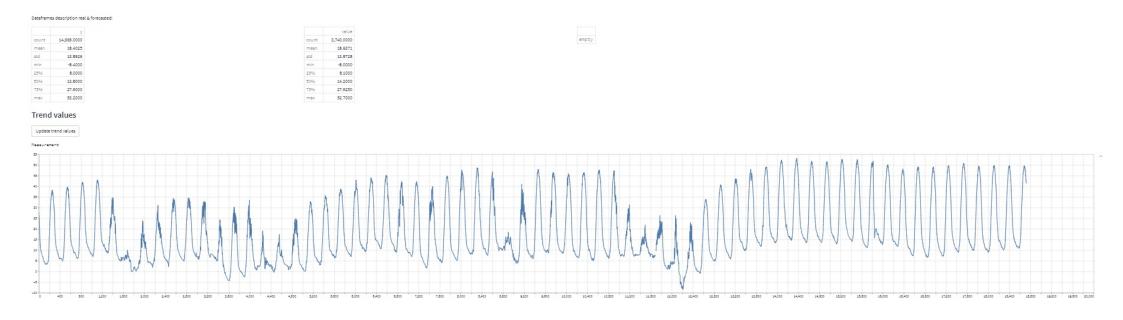
Training time (s)	144	UInt32
Training time (s)	48	UInt32
Training time (s)	113	UInt32
Training time (s)	24	UInt32
Training time (s)	24	UInt32
Last trained (Date)	2021-12-16T21:54:33.171Z	DateTime
Last trained (Date)	2021-12-16T21:55:27.215Z	DateTime
Last trained (Date)	2021-12-16T21:57:23.083Z	DateTime
Last trained (Date)	2021-12-16T21:57:51.953Z	DateTime
Last trained (Date)	2021-12-16T21:58:18.173Z	DateTime
Prediction time (ms)	509	UInt32
Prediction time (ms)	202	UInt32
Prediction time (ms)	394	UInt32
Prediction time (ms)	196	UInt32
Prediction time (ms)	194	UInt32



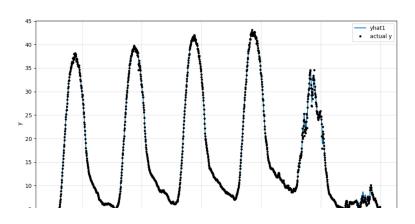
Overview

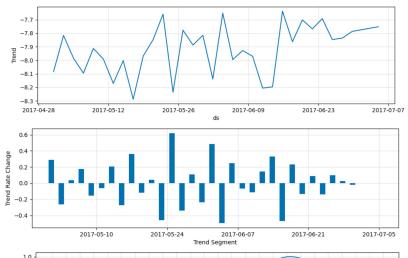


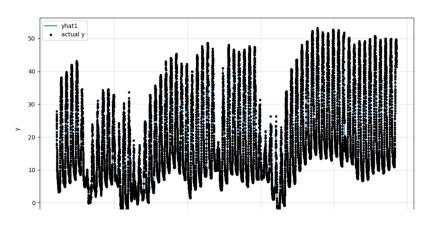
Actions & Variables

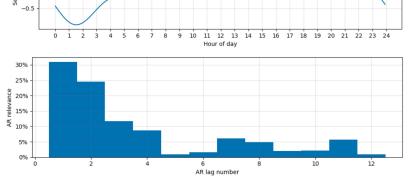


Model parameters


Show current measurement trend: Yosemite temperatures as example (>40k datapoints)






0.0

Train & fit

Cross validate

Validation results:

	SmoothL1Loss	MAE	RMSE
mean	0.0000	0.2725	0.4018
min	0.0000	0.2725	0.4018
max	0.0000	0.2725	0.4018

Dataframes description real & forecasted:

	у
count	14,969.0000
mean	18.4025
std	13.8926
min	-8.4000
25%	8.0000
50%	13.8000
75%	27.9000
max	53.2000

	value
count	3,740.0000
mean	18.6371
std	13.8728
min	-8.0000
25%	8.1000
50%	14.2000
75%	27.9250
max	52.7000

Benchmark results, simple experiment:

```
"data": "ns=5;s=i=1001"

"model": "NeuralProphet"

"params": "{'seasonality_mode': 'multiplicative'}"

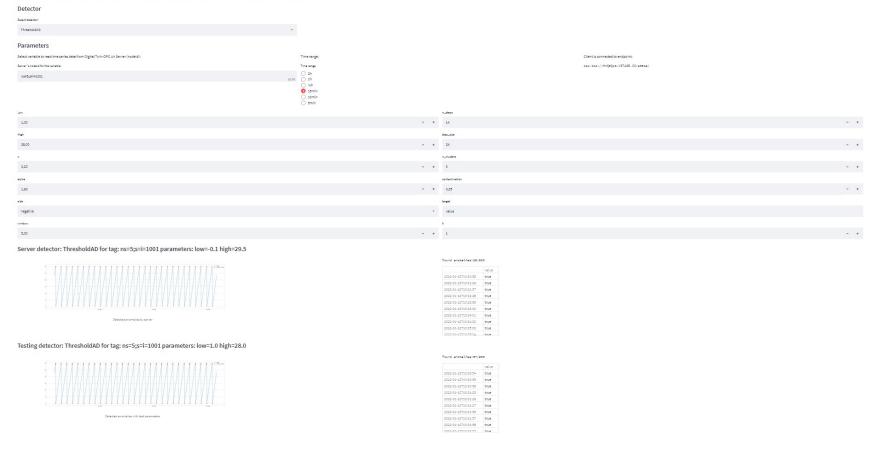
"MASE": "0.98102695"

"RMSE": "19.176846"
}
```

Benchmark results, cross-validate:

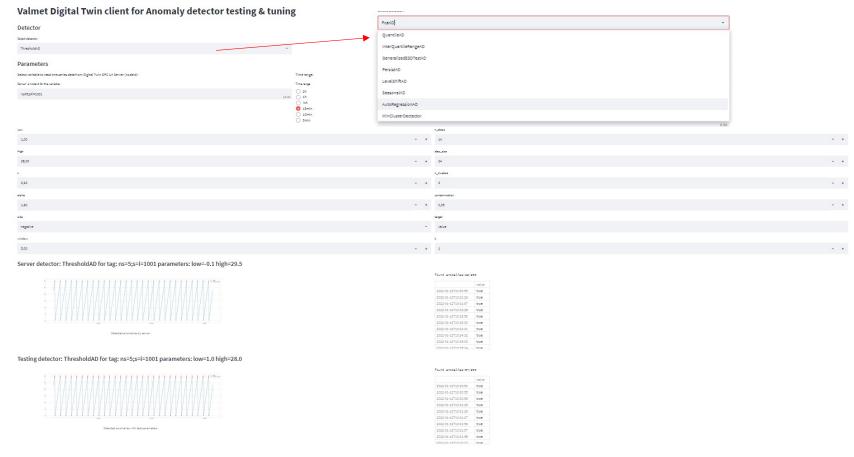
```
"data": "ns=5;s=i=1001"
  "model": "NeuralProphet"
  "params": "{'seasonality_mode': 'multiplicative'}"

  "MASE": [
    0: "0.9552446"
    1: "0.9847775"
    2: "0.99620473"
]

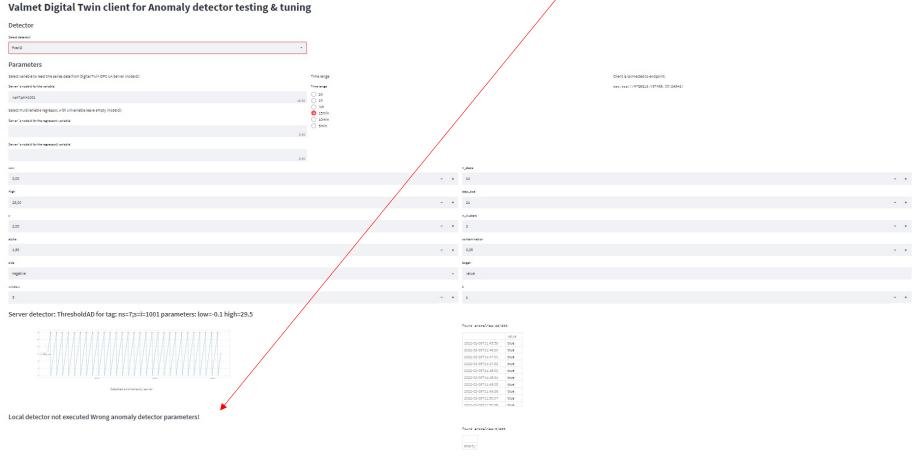

  "RMSE": [
    0: "18.886786"
    1: "19.121881"
    2: "19.44433"
]
```


Tools for tuning & validating Anomaly detection

Overview


Valmet Digital Twin client for Anomaly detector testing & tuning

Tools for tuning & validating Anomaly detection


Testing anomaly detection, select from available detector algorithms (14 implemented)

Tools for tuning & validating Anomaly detection

Testing Pca with 5min time range – no anomalies detected

Summary

- OPC UA used as standard communication to integrate AI for industrial use
- Python Neural Prophet for forecasting and ADTK Anomaly Detection Tool-Kit anomalies
- Web application build with Streamlit
 - Parameter tuning
 - Visualize model results
 - Test & validate, repeat until satisfied with the results
 - Write new model & parameters back to server with OPC UA
 - Integrated with FreeOpcUa: opcua-asyncio
- Many steps closer to people can use artificial intelligence at industry
 - Tools are first generation, proof of concept build, architecture promising
 - Needs training for people to understand parameters, models & algorithms
 - Multivariable models needed (current solution is simple univariable implementation)

Next actions with project members

- AWS EC2 instance with Digital Twin server (Valmet)
 - Simulated data (perhaps some historical real data)
 - Some photos (TBD synthetic or augmented)
- Workshop: How to implement Digital Twin client (Python snippets)
 - Digital Twin: INSTA & TAU
- Nokia: Test setup for WebRTC & integration
 - Embedded WebRTC (HTML)
 - Field device detector (AutoML TensorFlow model: object detector)
 - TDS: Person detector
- Architecture:
 - Nokia & Valmet: real-time data & video stream/photo, secure data connection

elect a new file: Choose File Test4;

"Loppukevennys"

