
TamaGo
Bare metal Go for ARM SoCs

Secure embedded unikernels
with drastically reduced attack surface

Andrea Barisani

Head of Hardware Security - F-Secure

@AndreaBarisani - andrea.bio

andrea.barisani@f-secure.com - foundry.f-secure.com

mailto:andrea.barisani@f-secure.com

$ whoami

Andrea Barisani

Information Security Researcher

Founder of (acquired in 2017)

Head of Hardware Security at

Maker of the USB armory

Speaker at too many conferences...

Security auditing and engineering with focus on
safety critical systems in the automotive, avionics, industrial domains.

twitter: @AndreaBarisani web: https://andrea.bio

Motivation: USB armory firmware

https://www.f-secure.com/en/consulting/foundry/usb-armory https://github.com/f-secure-foundry/usbarmory/wiki

The USB armory targets the following primary applications:

• Encrypted storage solutions
• Hardware Security Module (HSM)
• Enhanced smart cards
• Electronic vaults (e.g. cryptocurrency wallets) and key escrow services
• Authentication, provisioning, licensing tokens
• USB firewall

The USB armory is a tiny, but powerful, embedded
platform for personal security applications.

Designed to fit in a pockets, laptops, PCs and
servers.

https://www.f-secure.com/en/consulting/foundry/usb-armory

Motivation

In an ideal world you should be free to choose the language you prefer.

In an ideal world all compilers would generate machine code with the same efficiency.

However in real world lower specs heavily dictate language choices:

Microcontroller (MCU) firmware == unsafe¹ low level languages (C)

Examples: cryptographic tokens, cryptocurrency wallets, hardware diodes,
lower specs IoT and “smart” appliances.

 ¹ Pro tip: certification does not matter.

Motivation

In an ideal world using higher level languages should not entail complex dependencies.

In an ideal world higher level languages should reduce complexity.

Complexity should be reduced for the entire environment, not just being shifted away.

However in real world higher specs heavily dictate OS requirements:

System-on-Chip (SoC) firmware == complex OS + safe (or unsafe¹) languages

Examples: TEE applets, infotainment units, avionics gateways, home routers,
higher specs IoT and “smart” appliances.

 ¹ Privileged C-based apps running under Linux to “parse stuff” are very common, like your car infotainment/parking ECU.

Killing C

When security matters software and hardware optimizations matter less.

This means that less constrained hardware (e.g. SoCs in favor of MCUs) and higher level code
are perfectly acceptable.

However high level programming typically entails several layers (e.g. OS, libraries) to serve
runtime execution.

TamaGo spawns from the desire of reducing the attack surface of embedded systems
firmware by removing any runtime dependency on C code and inherently complex Operating
Systems.

In other words we want to avoid shifting complexity around and run a higher level language,
such as Go in our effort, directly on the bare metal.

 Audience mind reading trick: you are thinking “why not Rust?” … well why not *both* ?

Speed vs Safety

more hardware control less hardware control

easier (facilitates implementation safety)

harder (hampers implementation safety)

Disclaimer: chart presented for discussion and not to claim that language X is better than language Y, also scale is subjective.

Reducing the attack surface

 https://github.com/f-secure-foundry/usbarmory/wiki/Secure-boot-(Mk-II)

Typical secure booted firmware with authentication and confidentiality,
taken from USB armory implementation example (NXP i.MX6UL).

https://github.com/inversepath/usbarmory/wiki/Secure-boot-(Mk-II)

Speed vs Safety

more hardware control less hardware control

easier (facilitates implementation safety)

harder (hampers implementation safety)

Disclaimer: chart presented for discussion and not to claim that language X is better than language Y, also scale is subjective.

Unikernels / library OS

Unikernels¹ are a single address space image to executed a “library operating system”, typically
running under bare metal.

The focus is reducing the attack surface, carrying only strictly necessary code.

“True” unikernels are mostly unicorns, as a good chunk of available ones do not fit in this
category and represent “fat” unikernels running under hypervisors and/or other (mini) OSes
And just shift around complexity (e.g. the app is PID 1).

Apart for some exceptions there is always still a lot of C/dependencies involved in the
underlying OS, drivers or hypervisor.

 ¹ https://en.wikipedia.org/wiki/Unikernel An excellent summary: https://github.com/cetic/unikernels

Running or importing *BSD kernels
Rump kernels (NetBSD based)

OSv (re-uses code from FreeBSD)

Running under hypervisor
Nanos (Xen/KVM/Qemu) HalVM (Haskell, Xen)

LING (Erlang, Xen) RustyHermit (KVM)

Running under hypervisor and 3rd party kernel
MirageOS (Solo5)
ClickOS (MiniOS)

Bare metal
GRISP (Erlang)

IncludeOS

https://en.wikipedia.org/wiki/Unikernel
https://github.com/cetic/unikernels

Unikernel security

From a security standpoint leveraging on Unikernels (whatever the kind) to run multiple
applications or an individual C applications is not ideal¹.

Having an industry standard OS is necessary to support required security measures which
otherwise are not present or rather primitive on most Unikernels.

Again, we want to kill C from the entire environment while keeping code efficiency, developing
drivers having “only” to worry about interpreting reference manuals.

Unlike most unikernel projects we focus on small embedded systems, not the cloud.

We chose Go for its shallow learning curve, productivity, strong cryptographic library and
standard library.

Languages like Rust have already proven they role in bare metal world, Go on the other hand
needs to … and it really can!

 ¹ https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2019/april/assessing-unikernel-security/

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2019/april/assessing-unikernel-security/

TamaGo in a nutshell

TamaGo is made of two main components.

● A minimally¹ patched Go distribution to enable GOOS=tamago support, which provides
freestanding execution on GOARCH=arm bare metal.

● A set of packages² to provide board support (e.g. hardware initialization and drivers).

TamaGo currently provides drivers for the NXP i.MX6UL
System-on-Chip family (USB armory Mk II) as well as
the BCM2835 (Raspberry Pi Zero, Pi 1, Pi 2).

On the i.MX6UL we target development of security
applications, TamaGo is fully integrated with our
existing open source tooling for i.MX6 Secure Boot
(HAB) image signing.

TamaGo also provides full hardware initialization
removing the need for intermediate bootloaders.

 ¹ https://github.com/f-secure-foundry/tamago-go ² https://github.com/f-secure-foundry/tamago

Similar efforts
Biscuit (unmaintained) - https://github.com/mit-pdos/biscuit

Go kernel for non-Go software underneath, larger scope, needs two C bootloaders,
hijacks GOOS=linux, only for GOARCH=amd64, redoes memory allocation and threading.

G.E.R.T (unmaintained) - https://github.com/ycoroneos/G.E.R.T

ARM adaptation of Biscuit but without non-Go software support, needs two C bootloaders,
hijacks GOOS=linux for GOARCH=arm, redoes memory allocation and threading.

AtmanOS (unmaintained) - https://github.com/atmanos

Similar to TamaGo but targets the Xen hypervisor, adds GOOS=atman but with limited runtime support.

Tiny Go (active and rocking!) - https://github.com/tinygo-org

LLVM based compiler (not original one) aimed at MCUs and minimal footprint, does not
support the entire runtime and Go language support differs from standard Go.

Embedded Go (active) - https://github.com/embeddedgo

Similar to TamaGo but targets ARMv7-M/ARMv8-M (w/ Thumb2) adding new support for it,
as not native to Go. Adds GOOS=noos GOARCH=thumb, features interrupt/timer support.

All these projects greatly supported us in proving feasibility and identify TamaGo unique approach, diversity is good.

https://github.com/f-secure-foundry/tamago/wiki/Frequently-Asked-Questions-(FAQ)#how-does-tamago-differ-from-pastcurrent-similar-efforts

https://github.com/mit-pdos/biscuit
https://github.com/ycoroneos/G.E.R.T
https://github.com/mit-pdos/biscuit
https://github.com/embeddedgo
https://github.com/embeddedgo

Enabling trust
TamaGo not only wants to prove that it is possible to have a bare metal Go runtime, but
wants to prove that it can be achieved with clean and minimal modifications against the
original Go distribution².

Much of the effort has been placed to understand whether Go bare metal support can be
achieved without complex re-implementation of memory allocation, threading, ASM/C OS
primitives that would “pollute” the Go runtime to unacceptable levels.

Less is more. Complexity is the enemy of verifiability.

The acceptance of this (and similar) efforts hinges on maintainability, ease of review,
clarity, simplicity and trust.

★ Designed to achieve upstream inclusion and with commitment to always sync to latest Go release.
★ ~4000 LOC of changes against Go distribution with clean separation from other GOOS support.
★ Strong emphasis on code reuse from existing architectures of standard Go runtime, see Internals¹.
★ Requires only one import (“library OS”) on the target Go application.
★ Supports unencumbered Go applications with nearly full runtime availability.
★ In addition to the compiler, aims to provide a complete set of peripheral drivers for SoCs.

 ¹
https://github.com/f-secure-foundry/tamago/wiki/Internals

 ² Which by the way is self-hosted and has reproducible builds.

https://github.com/inversepath/tamago/wiki/Internals

Go distribution modifications¹
Glue code (~350 LOCs, ~100 files): patches to adds GOOS=tamago to the list of supported
architectures and required stubs for unsupported operations. All changes are benign (no
logic/function):

Re-used² code (~3000 LOCs, ~10 files) - patches that clone original Go runtime
functionality from an existing architecture to GOOS=tamago , either unmodified or with
minimal changes:

● plan9 memory allocation is re-used with 2 LOC changed (brk vs simple pointer)
● js,wasm locking is re-used identically (with JS VM hooks removed)
● nacl in-memory filesystem is re-used (raw SD/MMC access implemented in imx6)

New code (~600 LOCs, 12 files) - basic syscall and memory layout support:

rt0_tamago_arm.s (LOC: ~30) sys_tamago_arm.s (LOC: ~130)
rand_tamago.go (LOC: ~20) os_tamago_arm.go (LOC: ~200)

https://github.com/golang/go/compare/go1.16...f-secure-foundry:tamago1.16

 ¹ As of tamago1.16 against go1.16

// +build aix darwin dragonfly freebsd js,wasm linux nacl netbsd openbsd solaris tamago

 ² a.k.a. Go Frankenstein

https://github.com/golang/go/compare/go1.13.5...inversepath:tamago1.13.5

TamaGo memory layout
 +----------------------------------+ 0000 0000
 | |
 +----------------------------------+ runtime.ramStart
 | |
 | INTERRUPT VECTOR TABLE (16 kB) |
 | |
 +----------------------------------+ runtime.ramStart + 0x4000 (16 kB)
 | |
 | L1 PAGE TABLE (16 kB) |
 | |
 +----------------------------------+ runtime.ramStart + 0x8000 (32 kB)
 | |
 | EXCEPTION STACK (16 kB) |
 | |
 +----------------------------------+ runtime.ramStart + 0xC000 (48 kB)
 | |
 | L2 PAGE TABLE (16 kB) |
 | |
 +----------------------------------+ runtime.ramStart + 0x10000 (64 kB)
 | .text |
 | |
 | .noptrdata |
 | |
 | .data | Go application
 | |
 | .bss |
 | |
 | .noptrbss |
 +----------------------------------+
 | |
 | HEAP |
 | |
 +----------------------------------+ runtime.g0.stack.lo (runtime.go.stack.hi - 0x10000)
 | |
 | STACK (64 kB) |
 | |
 +----------------------------------+ runtime.go.stack.hi (runtime.ramStart + runtime.ramSize - runtime.ramStackOffset)
 | |
 | UNUSED |
 | |
 +----------------------------------+ runtime.ramStart + runtime.ramSize
 | |
 | |
 +----------------------------------+ FFFF FFFF

 https://github.com/f-secure-foundry/tamago/wiki/Internals

+----------------------------------+ mem.dmaStart
| |
| DMA BUFFERS |
| |
+----------------------------------+ mem.dmaStart + mem.dmaSize

Board packages and applications are free to
override ramStart , ramSize, dmaStart and
dmaSize if required.

https://github.com/inversepath/tamago/wiki/Internals

Go runtime support

 https://github.com/f-secure-foundry/tamago-go

// the following variables must be provided externally

var ramStart uint32

var ramStackOffset uint32

var ramSize uint32

// the following functions must be provided externally

func hwinit()

func printk(byte)

func exceptionHandler()

func getRandomData([]byte)

func initRNG()

func nanotime1() int64

Example of separation between
Go runtime, SoC and board
packages with pre-defined hooks
using go:linkname .

package imx6ul

//go:linkname ramStart runtime.ramStart

var ramStart uint32 = 0x80000000

// ramSize defined in board package

//go:linkname ramStackOffset runtime.ramStackOffset

var ramStackOffset uint32 = 0x100

package usbarmory

//go:linkname ramSize runtime.ramSize

var ramSize uint32 = 0x20000000 // 512 MB

//go:linkname printk runtime.printk

func printk(c byte) {

imx6.UART2.Write(c)

}

https://github.com/f-secure-foundry/tamago

ARM MMU initialization and exception handling are
all performed outside the Go runtime in tamago
arm package.

This means low-level APIs (e.g. TrustZone) can all
be implemented as a regular package.

The Go runtime modification is architecture
independent for the most part.

https://github.com/inversepath/tamago-go/blob/master/src/runtime/os_tamago_arm.go
https://github.com/cetic/unikernels

Go runtime support
os_tamago_arm.go (Go runtime)

//go:linkname syscall_now syscall.now

func syscall_now() (sec int64, nsec int32) {

sec, nsec, _ = time_now()

return

}

imx6.go (imx6 package)
//go:linkname nanotime1 runtime.nanotime1

func nanotime1() int64 {

return int64(ARM.TimerFn() * ARM.TimerMultiplier)

}

timer.s (arm package)
// func read_gtc() int64

TEXT ·read_gtc(SB),$0-8

// Cortex™-A9 MPCore® Technical Reference Manual

// 4.4.1 Global Timer Counter Registers, 0x00 and 0x04

// p214, Table 2-1, ARM MP Global timer, IMX6DQRM

MOVW $0x00a00204, R1

MOVW $0x00a00200, R2

read:

MOVW (R1), R3

MOVW (R2), R4

MOVW (R1), R5

CMP R5, R3

BNE read

MOVW R3, ret_hi+4(FP)

MOVW R4, ret_lo+0(FP)

RET

A small set of low-level functions
are integrated directly with Go
Assembly.

This follows existing patterns in
the Go runtime.

In the example ARM Generic
Timers (ARM Cortex-A7) are used
to support ticks and time related
functions.

Overall initialization code
accounts for less than 500 lines
of code.

https://github.com/f-secure-foundry/tamago https://github.com/f-secure-foundry/tamago-go

https://github.com/cetic/unikernels
https://github.com/inversepath/tamago-go/blob/master/src/runtime/os_tamago_arm.go

Go low level access
import "github.com/f-secure-foundry/tamago/internal/reg"

func setARMFreqIMX6ULL(hz uint32) (err error) {

var div_select uint32

var arm_podf uint32

var uV uint32

curHz := ARMFreq()

...

// set bypass source to main oscillator

reg.SetN(pll, CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC, 0b11, 0)

// bypass

reg.Set(pll, CCM_ANALOG_PLL_ARM_BYPASS)

// set PLL divisor

reg.SetN(pll, CCM_ANALOG_PLL_ARM_DIV_SELECT, 0b1111111, div_select)

// wait for lock

log.Printf("imx6_clk: waiting for PLL lock\n")

reg.Wait(pll, CCM_ANALOG_PLL_ARM_LOCK, 0b1, 1)

// remove bypass

reg.Clear(pll, CCM_ANALOG_PLL_ARM_BYPASS)

// set core divisor

reg.SetN(cacrr, CCM_CACRR_ARM_PODF, 0b111, arm_podf)

setOperatingPointIMX6ULL(uV)

...

Example: changing the i.MX6UL
SoC ARM core clock frequency.

Go’s unsafe can be easily
identified to spot areas that
require care (e.g. pointer
arithmetic), it is currently used
only in register and DMA memory
manipulation primitives.

There are overall only 3
occurrences of unsafe used in dma
and reg packages.

Applications are never required to
use any unsafe function.

 https://github.com/f-secure-foundry/tamago-go https://github.com/f-secure-foundry/tamago

https://github.com/inversepath/tamago-go/blob/master/src/runtime/os_tamago_arm.go
https://github.com/cetic/unikernels

Go runtime support
//go:linkname syscall

func syscall(number, a1, a2, a3 uintptr) (r1, r2, err uintptr) {

switch number {

case 1: // SYS_WRITE

r1 := write(a1, unsafe.Pointer(a2), int32(a3))

return uintptr(r1), 0, 0

default:

throw("unexpected syscall")

}

return

}

//go:nosplit

func write1(fd uintptr, buf unsafe.Pointer, count int32) int32 {

if fd != 1 && fd != 2 {

throw("unexpected fd, only stdout/stderr are supported")

}

c := uintptr(count)

for i := uintptr(0); i < c; i++ {

p := (*byte)(unsafe.Pointer(uintptr(buf) + i))

printk(*p)

}

return int32(c)

}

Only the write syscall is required
for the overwhelming majority of
basic runtime support.

As shown before, printk is
provided by the application to
define method for writing on
standard output (e.g. UART).

 https://github.com/f-secure-foundry/tamago-go https://github.com/f-secure-foundry/tamago

imx6_clk: changing ARM core frequency to 900 MHz

imx6_clk: changing ARM core operating point to 575000 uV

imx6_clk: 450000 uV -> 575000 uV

imx6_clk: waiting for PLL lock

imx6_clk: 396 MHz -> 900 MHz

imx6_soc: i.MX6ULL (0x65, 0.1) @ freq:900 MHz - native:true

https://github.com/inversepath/tamago-go/blob/master/src/runtime/os_tamago_arm.go
https://github.com/cetic/unikernels

TamaGo

 https://github.com/f-secure-foundry/tamago/wiki/Internals

Traditional OS

TamaGo unikernel

https://github.com/inversepath/tamago/wiki/Internals

Enabling trust

Developing, building and running

The full Go runtime is supported¹ without any specific changes required on the application
side (Rust on bare metal², for comparison, requires #![no_std] pragma).

Examples shown for USB armory Mk II / i.MX6ULZ.

 ¹
https://github.com/f-secure-foundry/tamago/wiki/Import-report

 ² https://rust-embedded.github.io/book/intro/no-std.html

package main

import (

_ "github.com/f-secure-foundry/tamago/board/f-secure/usbarmory/mark-two"

)

func main() {

// your code

}

GO_EXTLINK_ENABLED=0 CGO_ENABLED=0 GOOS=tamago GOARM=7 GOARCH=arm \

 ${TAMAGO} build -ldflags "-T 0x80010000 -E _rt0_arm_tamago -R 0x1000"

=> ext2load mmc $dev:1 0x90000000 tamago.elf

=> bootelf -p 0x90000000

1. The application requires a single
import for the board package to
enable necessary initializations.

2. Go code can be written with very
few limitations and the imx6
package can be used for any SoC
specific driver operation.

3. go build can be used as usual
(reproducible builds!) with few linker
flags to define entry point.

4a. The resulting ELF binary can be
passed to a bootloader (e.g U-Boot).

4b. The imx6 package supports
imximage creation for native loading
(no bootloader required!).

https://rust-embedded.github.io/book/intro/no-std.html

i.MX6ULZ driver: Data Co-Processor (DCP)

The DCP provides hardware accelerated crypto functions and use of the SoC unique
OTPMK key for device unique encryption/decryption operations. The driver takes ~230 LOC.

 https://github.com/f-secure-foundry/usbarmory/wiki/Hardware-security-features-(Mk-II)

workPacket := WorkPacket{}

workPacket.Control0 |= (1 << DCP_CTRL0_OTP_KEY)

...

workPacket.Control1 |= (AES128 << DCP_CTRL1_CIPHER_SELECT)

workPacket.Control1 |= (CBC << DCP_CTRL1_CIPHER_MODE)

workPacket.Control1 |= (UNIQUE_KEY << DCP_CTRL1_KEY_SELECT)

workPacket.BufferSize = uint32(len(diversifier))

workPacket.SourceBufferAddress = dma.Alloc(diversifier, 0)

defer dma.Free(workPacket.SourceBufferAddress)

workPacket.DestinationBufferAddress = dma.Alloc(key, 0)

defer dma.Free(workPacket.DestinationBufferAddress)

workPacket.PayloadPointer = dma.Alloc(iv, 0)

defer dma.Free(workPacket.PayloadPointer)

buf := new(bytes.Buffer)

binary.Write(buf, binary.LittleEndian, &workPacket)

pkt := dma.Alloc(buf.Bytes(), 0)

defer dma.Free(pkt)

reg.Write(HW_DCP_CH0CMDPTR, pkt)

reg.Set(HW_DCP_CH0SEMA, 0)

diversifier := []byte{0xde, 0xad, 0xbe, 0xef}

iv := make([]byte, aes.BlockSize)

key, err := imx6.DCP.DeriveKey(diversifier, iv)

-- i.mx6 dcp ---

imx6_dcp: derived test key 75f9022d5a867ad430440feec6611f0a

-- i.mx6 dcp ---

imx6_dcp: error, SNVS unavailable, not in trusted or secure state

USB armory Mk II example DCP + SNVS run (w/o Secure Boot)

Note that Go defined structs (such as WorkPacket) can be
easily made C-compatible¹ if required.

 ¹ Use cgo -godefs.

USB armory Mk II example DCP + SNVS run (w/ Secure Boot)

https://github.com/inversepath/usbarmory/wiki/Hardware-security-features-(Mk-II)

i.MX6ULZ driver: Random Number Generator
The RNGB provides a hardware True Random Number Generator, useful to gather the initial
seed on embedded systems without a battery backed RTC (and not much else²). The driver
takes ~140 LOC and is hooked as provider for crypto/rand.

¹ https://media.ccc.de/v/32c3-7441-the_plain_simple_reality_of_entropy

var getRandomDataFn func([]byte)

//go:linkname getRandomData runtime.getRandomData

func getRandomData(b []byte) {

getRandomDataFn(b)

}

func (hw *rngb) getRandomData(b []byte) {

read := 0

need := len(b)

for read < need {

if reg.Get(hw.status, HW_RNG_SR_ERR, 0x1) != 0 {

panic("imx6_rng: panic\n")

}

if reg.Get(hw.status, HW_RNG_SR_FIFO_LVL, 0xf) > 0 {

val := *hw.fifo

read = fill(b, read, val)

}

}

}

for i := 0; i < 10; i++ {

rng := make([]byte, size)

rand.Read(rng)

fmt.Printf("%x\n", rng)

}

-- rng ---

imx6_rng: self-test

imx6_rng: seeding

f90b00053a50b9edd42df027c982769d1a7d25445e31ce98486bd4a9676bef42

56baf6ecc32bf02fb9d09c2d8c607baa487e2283b6856486b42cdf954277d4d5

49fc0c03f8cbc45f7aeb58ba71c0d561a91dbeae697d7bc511482697bf96b2f8

345db47ab3395272a9db9531f03160b3e1654b7e8b7267c1a3bc97206f3cb8c7

cb54154b105a2bd3938fbd99f1f2f5409c0be09dc5f64189f473ae905d264b25

275994ee93e0c779f3eb30d770eeabfcb5ab0b8a5da68cc28a07dfbdb46a1e08

6215cc716b9ed577d3c6cd34d57f2dc3ed93c9b6aaedf120d68a4532393e1056

d691d7f93c57a54462f90ca76528beec4bda1a40220e5d5fbf43986308f9013b

6ea213b27eb3e0e4243b3c872e7a07b7898d9f07ea205b8a50c30e62c7204602

4544d5dff957471972331532aaf34eb5644bc430f854dd6593177640e07e4f00

USB armory Mk II example TRNG run

https://media.ccc.de/v/32c3-7441-the_plain_simple_reality_of_entropy

i.MX6ULZ driver: USB

 https://github.com/f-secure-foundry/tamago/tree/master/soc/imx6/usb

func buildDTD(n int, dir int, ioc bool, addr uint32, size int) (dtd *dTD) {

dtd = &dTD{}

// interrupt on completion (ioc)

if ioc {

bits.Set(&dtd.Token, 15)

} else {

bits.Clear(&dtd.Token, 15)

}

// invalidate next pointer

dtd.Next = 0b1

// multiplier override (MultO)

bits.SetN(&dtd.Token, 10, 0b11, 0)

// active status

bits.Set(&dtd.Token, 7)

// total bytes

bits.SetN(&dtd.Token, 16, 0xffff, uint32(size))

dtd._buf = addr

dtd._size = uint32(size)

for n := 0; n < DTD_PAGES; n++ {

dtd.Buffer[n] = dtd._buf + uint32(DTD_PAGE_SIZE*n)

}

buf := new(bytes.Buffer)

binary.Write(buf, binary.LittleEndian, dtd)

dtd._dtd = dma.Alloc(buf.Bytes()[0:DTD_SIZE], DTD_ALIGN)

return

}

Example of Endpoint Transfer
Descriptor (dTD) configuration.

A custom DMA allocator is used to
copy structures on memory reserved
for DMA operation, with required
alignements.

addr = dma.Alloc(buf, align)
defer dma.Free(addr)

Buffers can be also reserved by the
application to spare re-allocation
(automatic detection of slices already
in DMA memory).

Using Go goroutines, channels,
mutexes, interfaces freely in low
level drivers is a delight!

All in ~1000 LOC !

https://github.com/inversepath/tamago/tree/master/imx6/usb

i.MX6ULZ driver: USB networking

 https://github.com/f-secure-foundry/tamago/tree/master/soc/imx6/usb/ethernet

func configureEthernetDevice(device *usb.Device) {

// Supported Language Code Zero: English

device.SetLanguageCodes([]uint16{0x0409})

// device descriptor

device.Descriptor = &usb.DeviceDescriptor{}

device.Descriptor.SetDefaults()

device.Descriptor.DeviceClass = 0x2

device.Descriptor.VendorId = 0x0525

device.Descriptor.ProductId = 0xa4a2

device.Descriptor.Device = 0x0001

device.Descriptor.NumConfigurations = 1

iManufacturer, _ := device.AddString(`TamaGo`)

device.Descriptor.Manufacturer = iManufacturer

iProduct, _ := device.AddString(`RNDIS/Ethernet Gadget`)

device.Descriptor.Product = iProduct

iSerial, _ := device.AddString(`0.1`)

device.Descriptor.SerialNumber = iSerial

// device qualifier

device.Qualifier = &usb.DeviceQualifierDescriptor{}

device.Qualifier.SetDefaults()

device.Qualifier.DeviceClass = 2

device.Qualifier.NumConfigurations = 2

}

func configureECM(device *usb.Device) {

...

conf.Interfaces = append(conf.Interfaces, iface)

ep1IN := &usb.EndpointDescriptor{}

ep1IN.SetDefaults()

ep1IN.EndpointAddress = 0x81

ep1IN.Attributes = 2

ep1IN.MaxPacketSize = 512

ep1IN.Function = ECMTx

iface.Endpoints = append(iface.Endpoints, ep1IN)

ep1OUT := &usb.EndpointDescriptor{}

ep1OUT.SetDefaults()

ep1OUT.EndpointAddress = 0x01

ep1OUT.Attributes = 2

ep1OUT.MaxPacketSize = 512

ep1OUT.Function = ECMRx

iface.Endpoints = append(iface.Endpoints, ep1OUT)

}

Example USB Ethernet (CDC ECM)
driver integrated with Google
netstack (gvisor.dev/gvisor/pkg/tcpip)
for pure Go networking.

Developed in less than 2 hours and ~150 LOC.

func ECMTx(_ []byte, lastErr error) (in []byte) {

// gvisor tcpip channel link

pkt := <-link.C:

...

// Ethernet frame header

in = append(in, hostMAC...)

in = append(in, deviceMAC...)

in = append(in, proto...)

// packet header

in = append(in, hdr...)

// payload

in = append(in, payload...)

return

}

func ECMRx(out []byte, lastErr error) ([]byte) {

...

pkt := tcpip.PacketBuffer{

LinkHeader: hdr,

Data: payload,

}

// gvisor tcpip channel link

link.InjectInbound(proto, pkt)

return

}

https://github.com/inversepath/tamago/blob/master/example/usb_ethernet.go

i.MX6ULZ driver: uSDHC (MMC/SD)

 https://github.com/f-secure-foundry/tamago/tree/master/soc/imx6/usdhc

// p351, 35.4.5 SD card initialization flow chart, IMX6FG

// p57, 4.2.3 Card Initialization and Identification Process, SD-PL-7.10

func (hw *USDHC) initSD() (err error) {

var arg uint32

var bus_width uint32

var mode uint32

var root_clk uint32

var clk int

var tune bool

if hw.LowVoltage == nil {

hw.card.Rate = HS_MBPS

} else if hw.card.Rate >= SDR50_MBPS {

if err = hw.voltageSwitchSD(); err != nil {

hw.card.Rate = HS_MBPS

}

}

// CMD2 - ALL_SEND_CID - get unique card identification

if err = hw.cmd(2, READ, arg, RSP_136, false, true, false, 0); err != nil {

return

}

// CMD3 - SEND_RELATIVE_ADDR - get relative card address (RCA)

if err = hw.cmd(3, READ, arg, RSP_48, true, true, false, 0); err != nil {

return

}

...

The uSDHC driver supports
read/write operation on MMC/SD
with speeds up to HS200 and SDR104
respectively.

All in ~1200 LOC !

It is used by armory-ums to allow
export of the USB armory Mk II
internal eMMC card as USB mass
storage devices to ease firmware
flashing.

In combination with packages such
as go-ext4 it allows filesystem
access (see armory-boot).

https://github.com/inversepath/tamago/tree/master/imx6/usb

Demo
example $ make clean && make qemu

GO_EXTLINK_ENABLED=0 CGO_ENABLED=0 GOOS=tamago GOARM=7 GOARCH=arm /mnt/git/public/tamago-go/bin/go build -ldflags "-T 0x80010000 -E _rt0_arm_tamago -R 0x1000"

Hello from tamago/arm! (epoch 899072000)

launched 6 test goroutines

-- btc ---

Script Hex: 76a914128004ff2fcaf13b2b91eb654b1dc2b674f7ec6188ac

Script Disassembly: OP_DUP OP_HASH160 128004ff2fcaf13b2b91eb654b1dc2b674f7ec61 OP_EQUALVERIFY OP_CHECKSIG

Script Class: pubkeyhash

Addresses: [12gpXQVcCL2qhTNQgyLVdCFG2Qs2px98nV]

Required Signatures: 1

Transaction successfully signed

-- file --

read /tamago-test/tamago.txt (22 bytes)

-- timer ---

waking up timer after 100ms

woke up at 171120352 (93.738512ms)

-- sleep ---

sleeping 100ms

 slept 100ms (100.223056ms)

-- rng ---

a4da1f2b0d400650c26b3b51d32d2e4b10fdd11809d0e3560e8258182fd4237a

-- ecdsa ---

ECDSA sign and verify with p224 ... done (133.080912ms)

ECDSA sign and verify with p256 ... done (59.179904ms)

--

completed 6 goroutines (772.217728ms)

-- memory allocation (9 runs) ---------------------------------------

1440 MB allocated (Mallocs: 3166 Frees: 2530 HeapSys: 171868160 NumGC:45)

Goodbye from tamago/arm (2.172031504s)

exit with code 0 halting

Debugging

GDB can be used as usual, on emulated (QEMU) targets or real
ones (JTAG).

On networked targets, such as the USB armory, the pprof
package can be used as usual for tracing.

GoKey - The bare metal Go smart card

 https://github.com/f-secure-foundry/gokey

The GoKey application implements a composite USB
OpenPGP 3.4 smartcard and FIDO U2F token, written
in pure Go (~2500¹ LOC).

It allows to implement a radically different security
model for smartcards, taking advantage of TamaGo
to safely mix layers and protocols not easy to
combine.

For instance authentication can happen over SSH
instead of plaintext PIN transmission over USB.

 ¹ CCID: ~220 ICC: ~1000 U2F: 200

https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.4.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf

Demo: GoKey

 https://github.com/f-secure-foundry/gokey https://youtu.be/WeO2eiYSeWM

http://www.youtube.com/watch?v=WeO2eiYSeWM
https://rust-embedded.github.io/book/intro/no-std.html

Armory Drive - Encrypted USB Mass Storage

 https://github.com/f-secure-foundry/armory-ums

The armory-ums firmware (~350 LOC) implements a USB Mass Storage device to expose the
USB armory Mk II internal eMMC and external uSD cards to any host for read/write
operations.

The armory-drive firmware (~2000 LOC) builds on top of armory-ums to implement full disk
encryption for microSD cards accessed as USB mass storage, with out-of-band
authentication through mobile app.

 https://github.com/f-secure-foundry/armory-drive

https://rust-embedded.github.io/book/intro/no-std.html

Demo: armory-drive

 https://youtu.be/LAk1BBpwahM https://github.com/f-secure-foundry/armory-drive

http://www.youtube.com/watch?v=LAk1BBpwahM
https://rust-embedded.github.io/book/intro/no-std.html

GoTEE - Trusted Execution Environment

 https://github.com/f-secure-foundry/GoTEE

The GoTEE framework implements concurrent
instantiation of TamaGo based unikernels in
privileged and unprivileged modes, interacting with
each other through monitor mode and custom
system calls.

With these capabilities GoTEE implements a pure Go
Trusted Execution Environment (TEE) bringing Go
memory safety, convenience and capabilities to bare
metal execution within TrustZone Secure World.

It supports any freestanding user mode applets
(e.g. TamaGo, C, Rust) and any “rich” OS running in
NonSecure World (e.g. Linux).

https://github.com/f-secure-foundry/GoTEE/wiki/

https://github.com/cetic/unikernels

Demo: GoTEE
PL1 tamago/arm (go1.16.4) • TEE system/monitor (Secure World)

PL1 loaded applet addr:0x82000000 size:3897203 entry:0x8206dab8

PL1 loaded kernel addr:0x84000000 size:3840614 entry:0x8406c6c4

PL1 starting mode:USR ns:false sp:0x00000000 pc:0x8206dab8

PL1 starting mode:SYS ns:true sp:0x00000000 pc:0x8406c6c4

PL1 tamago/arm (go1.16.4) • system/supervisor (Normal World)

PL1 in Normal World is about to perform DCP key derivation

PL1 in Normal World successfully used DCP (e777b98dd28a4071a0c94821b7a1a4d1)

PL1 in Normal World is about to yield back

r0:00000000 r1:848220c0 r2:00000001 r3:00000000

r1:848220c0 r2:00000001 r3:00000000 r4:00000000

r5:00000000 r6:00000000 r7:00000000 r8:00000007

r9:00000034 r10:848000e0 r11:802c2a48 r12:00000000

sp:8484ff50 lr:841503c0 pc:8414a86c spsr:600c00df

PL1 stopped mode:SYS ns:true sp:0x8484ff50 lr:0x841503c0 pc:0x8414a86c err:exception mode MON

PL0 tamago/arm (go1.16.4) • TEE user applet (Secure World)

PL1 re-launching kernel with TrustZone restrictions

PL1 starting mode:SYS ns:true sp:0x00000000 pc:0x8406c6c4

PL1 tamago/arm (go1.16.4) • system/supervisor (Normal World)

PL1 in Normal World is about to perform DCP key derivation

r0:02280000 r1:8484e3a0 r2:00000001 r3:00000000

r1:8484e3a0 r2:00000001 r3:00000000 r4:00000000

r5:00000000 r6:00000000 r7:00000000 r8:00000007

r9:00000044 r10:848000e0 r11:802c2a48 r12:00000000

sp:8484ff34 lr:8414a990 pc:84011374 spsr:200c00df

PL1 stopped mode:SYS ns:true sp:0x8484ff34 lr:0x8414a990 pc:0x84011374 err:exception mode MON

PL1 in Secure World is about to perform DCP key derivation

PL1 in Secure World World successfully used DCP (e777b98dd28a4071a0c94821b7a1a4d1)

PL1 says goodbye

 https://github.com/f-secure-foundry/GoTEE/wiki/TrustZone-configuration

$ ssh gotee@10.0.0.1

PL1 tamago/arm (go1.16.5) • TEE system/monitor (Secure World)

 help # this help
 reboot # reset the SoC/board
 stack # stack trace of current goroutine
 stackall # stack trace of all goroutines
 md <hex offset> <size> # memory display (use with caution)
 mw <hex offset> <hex value> # memory write (use with caution)

 gotee # TrustZone test w/ TamaGo unikernels
 csl # show config security levels (CSL)
 csl <periph> <slave> <hex csl> # set config security level (CSL)
 sa # show security access (SA)
 sa <id> <secure|nonsecure> # set security access (SA)

>

https://github.com/f-secure-foundry/GoTEE-example

https://github.com/cetic/unikernels

armory-boot - USB armory boot loader

 https://github.com/f-secure-foundry/armory-boot

A primary signed boot loader (~300 LOC) to launch authenticated Linux kernel images on
secure booted¹ USB armory boards, replacing U-Boot.

func verifySignature(bin []byte, s []byte) (valid bool, err error) {

sig, err := DecodeSignature(string(s))

if err != nil {

return false, fmt.Errorf("invalid signature, %v", err)

}

pub, err := NewPublicKey(PublicKeyStr)

if err != nil {

return false, fmt.Errorf("invalid public key, %v", err)

}

return pub.Verify(bin, sig)

}

func verifyHash(bin []byte, s string) bool {

h := sha256.New()

h.Write(bin)

if hash, err := hex.DecodeString(s); err != nil {

return false

}

return bytes.Equal(h.Sum(nil), hash)

}

func boot(kernel []byte, dtb []byte, cmdline string) {

dma.Init(dmaStart, dmaSize)

mem, _ := dma.Reserve(dmaSize, 0)

dma.Write(mem, kernel, kernelOffset)

dma.Write(mem, dtb, dtbOffset)

image := mem + kernelOffset

params := mem + dtbOffset

arm.ExceptionHandler = func(n int) {

if n != arm.SUPERVISOR {

panic("unhandled exception")

}

usbarmory.LED("blue", false)

usbarmory.LED("white", false)

imx6.RNGB.Reset()

imx6.ARM.DisableInterrupts()

imx6.ARM.FlushDataCache()

imx6.ARM.Disable()

exec(image, params)

})

svc()

}

 ¹
https://github.com/f-secure-foundry/usbarmory/wiki/Secure-boot-(Mk-II)

Performance

Go code runs (expectedly) with identical, or improved, speed compared to the same code
executed under a full blown OS.

TamaGo drivers operates comparably to their Linux counterparts, no serious overhead
is present and anyway absolute performance is not a main focus of the effort, which
remains security oriented.

Go ECDSA testsuite¹ TamaGo Linux
ECDSA sign+verify p224 115 ms 116 ms
ECDSA sign+verify p256 48 ms 46 ms
ECDSA sign+verify p384 1.85 s 1.89 s
ECDSA sign+verify p521 3.48 s 3.60 s

AES-128-CBC encryption w/ DCP TamaGo OpenSSL (cryptodev) Linux userspace (AF_ALG)
65536 blocks for 10s 6143 4501 3138
4096 blocks for 10s 60985 56465 6578

Go standard libraries run with comparable performance, while TamaGo hardware drivers
highlight increased performance.

 ¹ https://github.com/golang/go/blob/go1.13.6/src/crypto/ecdsa/ecdsa_test.go#L124

https://github.com/golang/go/blob/go1.13.5/src/crypto/ecdsa/ecdsa_test.go#L124

Current limitations
The TamaGo runtime is single threaded therefore:

● avoid¹ tight loops without function calls

● avoid deadlocks (e.g. do not sleep in main() if nothing else is happening)

Packages/applications which rely on unsupported system calls do not compile (e.g.
terminal prompt packages that require syscall.SYS_IOCTL), though usually such
packages do not make sense in the context of OS-less unikernel operations.

Importing libraries that require cgo can only be done with internal linking, integrating C
code with cgo is possible as long as such code is free standing.

There is no OS, there are no users, there are no signals, there are no environment
variables. This is a feature, not a bug.

With the exception of few limitations² Go is surprisingly adept to run on bare metal.

 ¹ or just force runtime.Gosched ² https://github.com/f-secure-foundry/tamago/wiki/Internals#go-application-limitations

Applications and future

TamaGo imx6 package supports a wide variety of i.MX6 SoC drivers, initial Raspberry Pi
support is also available.

TamaGo lays out the foundation for development of pure Golang
HSMs,

cryptocurrency wallets,
authentication tokens,

TrustZone secure monitors,
and much more...

It is our policy to keep comments and references (document title and page number) for all
low level interactions within drivers.

TamaGo source code is a great tool to learn low level SoC development!

What have we¹ learned?

Bare metal applications can play a big role in
the future of secure embedded systems and

can be built by reducing complexity.

We feel the need for a paradigm shift and think
there is no place for C code in complex drivers or applications anymore.

Go is a language that, among others, can definitely play a role in this.

To achieve trust we proved that
Go distribution modifications can be minimal to achieve

bare metal execution.

We completely killed C².

It’s all about enabling choice
and building trust.

 ¹ “We” as in the authors, but maybe the audience as well. ² The SoC boot ROM jumps directly to Go runtime.

Repository: https://github.com/f-secure-foundry/tamago
Documentation: https://github.com/f-secure-foundry/tamago/wiki

 API: http://pkg.go.dev/github.com/f-secure-foundry/tamago

Q & A

Andrea Barisani

Head of Hardware Security - F-Secure

@AndreaBarisani - andrea.bio

andrea.barisani@f-secure.com - foundry.f-secure.com

https://github.com/f-secure-foundry/tamago/wiki
https://github.com/f-secure-foundry/tamago/wiki
mailto:andrea.barisani@f-secure.com

