
Edge IoT with AWS
and Yocto Linux
FIIF 29.4.2021
Kenneth Falck <kennu@nordcloud.com>

About me.

Kenneth Falck <kennu@nordcloud.com>

Principal Architect at Nordcloud

Worked with

● IoT & Edge since 2016
● Serverless since 2014
● AWS Cloud since 2011
● Internet since 1995

Twitter: @kennu

Introduction

2

European Leader in Public Cloud.

Local presence in 10 countries.

Nordcloud was born in the cloud 2011 and has
grown to be the European leader in public cloud
infrastructure solutions and cloud native
application services. IBM announced its acquisition
of Nordcloud on December 21, 2020.

We have the highest accreditations with all three
cloud hyperscalers: AWS, Azure and GCP.

Our highly skilled organisation comprises of:

500+ cloud experts with

300+ certifications

About Nordcloud, an IBM Company

3

https://newsroom.ibm.com/2020-12-21-IBM-to-Acquire-Nordcloud-to-Turbocharge-Its-Hybrid-Cloud-Consulting-Capability

Overview of an IoT Edge System.

Agenda

4

IoT Edge Devices
(Local integration,
data aggregation,
monitoring, etc)

Device
management

Edge application
deployment

Software
updates

Data
ingestion

Custom
management

solution

No servers!
Use managed
cloud services.

Scale in 1000s or
10000s of devices

IoT Devices

Hardware architectures

Yocto Linux development

Cloud Management

AWS IoT & device provisioning

Software updates

Edge Applications

Greengrass applications

Docker applications

Topics to discuss.

Agenda

5

Hardware architectures.

IoT Devices

6

Tip: AWS Partner Device Catalog is a database of AWS IoT
compatible devices: https://devices.amazonaws.com.

Linux-capable ARM
Low-power, low-cost edge applications

PCs
Large, expensive, warm, etc.

Microcontrollers
Need low-level programming

Focus here

https://devices.amazonaws.com

Yocto Linux.

Yocto Linux creates a custom Linux distribution tailored for our device.

Steep learning curve, but also the industry standard.

● Strange terminology (“layers”, “recipes”, “packages”, “bsp”, “meta”, etc.).
● Build process is hacky, based on shell scripts and custom syntax.
● Officially supported by hardware manufacturers, but often need older version.

IoT Devices

7

Board Support Package Layer
U-Boot, Linux kernel, modules

Package Layers
Standard Linux software

3rd Party Layers
Mender, AWS Greengrass, etc.

Bootable image
Boot + root partitions

Development & build process.

Start with a simple base image that supports our hardware.

● Add packages to implement functionality.
● Add build targets to support different environments.
● Note: This is the application platform - actual applications will deploy later on top of it.

IoT Devices

8

Base
image

Add system packages
Services, Greengrass, Mender, etc.

Add hardware targets
Emulator, developer device, real device

Add self-made packages
Integration to cloud etc.

Add software configurations
Development, testing, production

Burn & test
on device(s)

AWS IoT.

AWS IoT Core manages IoT devices and acts as message broker.

● Register each device as a “Thing” in built-in database.
● Authenticate devices that connect via MQTT.
● Process MQTT messages (which are organized under Topics).

Cloud Management

9

Device
shadows
(JSON state)

Device
provisioning

Rule actions

Other AWS IoT services like Greengrass, IoT Analytics, IoT Events, etc. are built on IoT Core.

AWS IoT is fully managed
and serverless!

Pay per messages and
connection minutes

Topic
rules
(“SQL”)AWS IoT SDK

or Greengrass

Certificate & key

Messaging

Device provisioning.

We need an automated solution to provision a large number of devices.

How to authenticate devices for auto-registration before we provision a certificate?

● Option A: Device image includes an auto-registration code that allows it
to auto-register on first boot.

● Option B: ”Factory guy” at the factory creates certificates with OpenSSL
and Private CA (complicated).

Cloud Management

10

Register device
and certificate

in AWS IoT.

Trigger
provisioning

event in AWS.

Run Step
Function to
orchestrate

provisioning.

Auto-approve
new device on
Mender Server.

Create device
specific cloud

resources.

Software updates.

Mender provides reliable and efficient software updates.

● Download new image directly to partition B (avoid disk full errors).
● Keep previous version on Partition A and boot new image from Partition B.
● Integrate with U-Boot, fallback to partition A on failure.

Cloud Management

11

Upload new
.mender file to
Mender Server.

Deploy new
version to desired

devices.

Mender Client on
each device

downloads and
boots new image.

Build new
software version

(.mender file).

Tip: Mender is open source but offers hosted cloud service if you don’t want
to self-host. Paid version has incremental updates (smaller images).

Application Updates

OS Updates

AWS Greengrass
(no reboot)

Greengrass edge applications.

Greengrass (V1) is a MQTT message broker that deploys and runs Lambda functions locally on devices.

Our edge applications are Lambda functions (Python or TypeScript modules).

● Functions communicate with MQTT messages.
● Functions access local hardware to integrate with sensors and actuators.
● Greengrass provides built-in functions (Modbus, GPIO, etc).

Edge applications

12

Build Lambda
functions, deploy

to the cloud.

Trigger custom
deployment

solution.

Solution creates
a Greengrass V1
deployment for

each device.

Greengrass
deploys Lambda

functions to each
device.

Tip: Greengrass V2 was released recently with a new, simplified component model.

Greengrass
as an IoT
gateway

Docker edge applications.

Sometimes you want to run Docker containers instead of Greengrass Lambda functions.

● Greengrass (V1) can deploy docker-compose.yml files to devices and start the containers.
● Greengrass configures permissions so Docker can pull images from AWS ECR.

Edge applications

13

Tip: Greengrass V2 has a more unified and simplified model for deploying Docker containers.
All components are basically equal (functions, containers, shell scripts, any executable).

Build and push
Docker container
image to cloud.

Trigger custom
deployment

solution.

Solution creates
docker-compose.

yml for each
device.

Greengrass
deploys Docker
containers to
each device.

Final system architecture.

Summary

14

IoT Edge Devices

AWS IoT
Provisioning,
authentication,
messaging

Greengrass
Lambda & Docker
edge application
deployment

Software updates

Kinesis
Data ingestion

S3
Data storage

Timestream
Time series database

DynamoDB
Config database

Lambda
System logic

API Gateway
Management API

Greengrass
Core

Client

Docker Containers

Thank you for your attention!

Kenneth Falck <kennu@nordcloud.com>
Twitter @kennu

Lambda Functions

Serverless management solution

CloudWatch
Monitoring & logging

mailto:kennu@nordcloud.com

