Digital Twin software infrastructure – practical approach

Using *ModelConductor* – an open source digital twin framework

- Wapice

CREATING A SMARTER FUTURE TODAY Panu Aho

© Wapice Ltd. CONFIDENTIAL

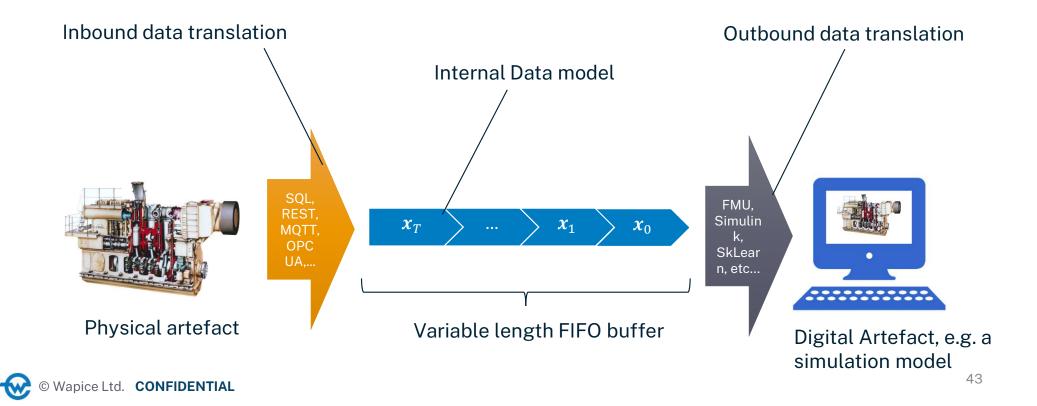
Disclaimer

- The presented work has been carried out in scope of a master's thesis for Turku University of Applied Sciences while the author was employed there as a research engineer
- ModelConductor framework source code and the thesis are distributed as open source:
 - Master's thesis: https://trepo.tuni.fi/handle/10024/118591
 - Source code (MIT License):
 https://github.com/donkkis/modelconductor

What is a digital twin?

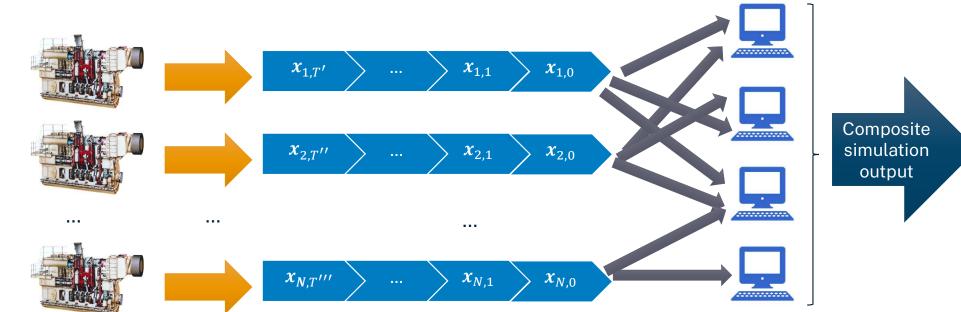
 "A Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin." [1]

[1] E. Glaessgen and D. Stargel, "The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles," in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Special Session on the Digital Twin, 2012, pp. 1–14.


... In other words ...

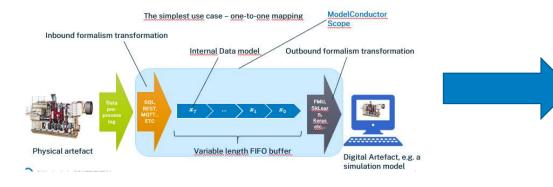
- Digital Twins (DT's) are a particular class of simulation artefacts with characteristics of:
 - **Representativity**: Each DT is a *digital artefact* that has a corresponding paired *physical artefact*. The digital counterpart is expected to be representative of the physical one
 - > **Inspectability**: At any time, any attribute entailed in the DT should be easily accessible.
 - Contemporality: Active efforts should be taken by the DT itself and/or an encapsulating middleware layer to reflect changes during lifetime

ModelConductor approach


The simplest use case - one-to-one mapping

ModelConductor approach

Can be extended to support arbitrarily complex many-to-many scenarios - hence the postfix "Conductor"

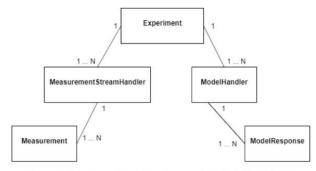


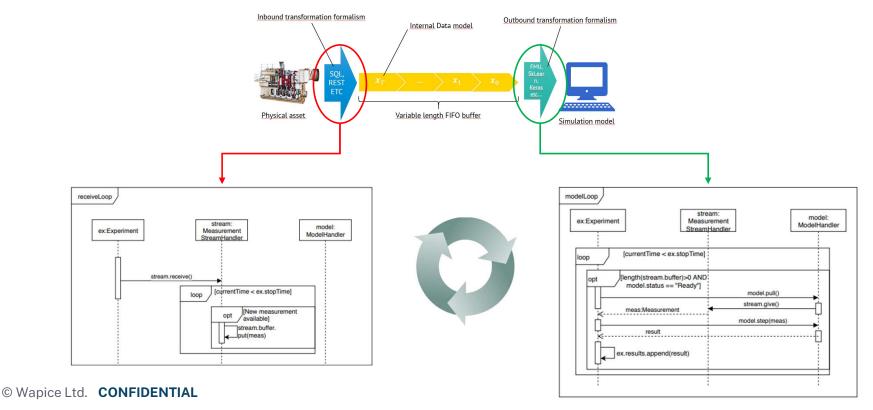
ModelConductor high level architecture

- > The generic workflow translated to object oriented sofware modules
- Abstract classes can be extended to support an arbitrary number of formalisms

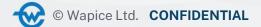
Requirements: User stories

Features: software structure and functionality




Figure 13. Specification-level class diagram of the ModelConductor library.

Asynchronous publish/consume mechanism

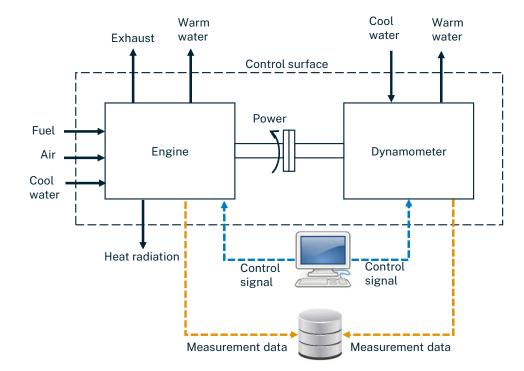

The buffer(s) are populated and emptied dynamically by threaded execution of respective loops

The receive and step methods are extended from a base class for each formalism (e.g. REST API, SQL query...)

Case: Turku University of Applied Sciences - Internal Combustion Engine Laboratory

Building a simple machine learning based digital twin with ModelConductor

TUAS Internal Combustion Engine Laboratory


- Experimental internal combustion engine studies are routinely carried out at TUAS ICEL
- Test engines are fitted to dynamometers by research personnell
- The necessary instrumentation is installed to measure the e.g. the performance and emission values of the engine

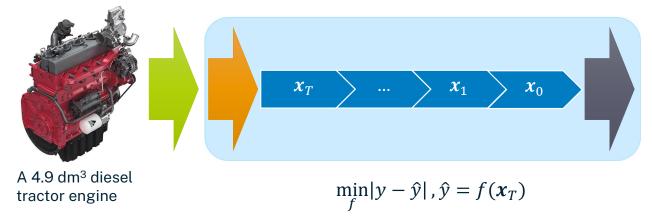
😡 © Wapice Ltd. CONFIDENTIAL

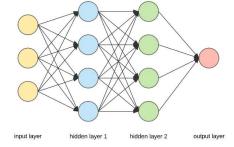
Obtaining the control data

- Engines are driven in varying loading cycles, while registering operational data, e.g.:
 - > Engine speed and torque
 - > Air intake and fuel consumption rates.
 - Temperatures and pressures at various locations
 - Environmental pollutant's concentrations in exhaust gases
 - Various attributes regarding engine auxiliaries such as the turbocharger
 - Attributes read directly from the Engine Control Unit (ECU) via CAN bus
 - Atmospheric conditions

© Wapice Ltd. CONFIDENTIAL

Example setup: Diesel engine real-time NO_x estimation

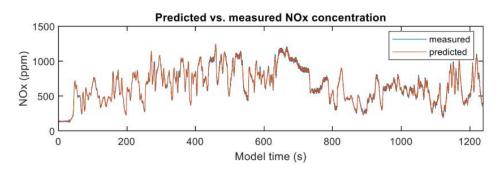

 $x_T \in \mathbb{R}^{157}$

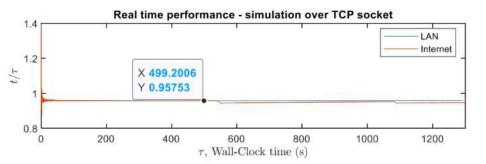

Table 1. Key characteristics of the target engine for simulation

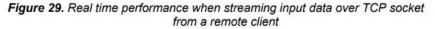
Attribute	Description	
Engine type	In-line, 4-cylinder, 4-stroke, turbocharged &	
	intercooled	
Displacement (dm ³)	4.9	
Bore (mm)	108	
Stroke (mm)	134	
Max. Torque (Nm)	860	
Rated power (kW)	148	
Fuel type and fuel injection	Diesel, common rail	
system type		

Table 2. Results from training various ML models for the NOx prediction problem

Model type	Training Error ⁶ (MAE)	Test Error ⁷ (MAE)
Linear regression	93.7	96.5
Polynomial regression (2 nd order)	35.6	43.5
Random forest (100 trees, maximum depth 25)	4.6	12.1




A machine learning model to predict engine-out NO_x emissons based on engine operation parameters


tractor engine

Experimental results

More information:

- Master's thesis
 - https://trepo.tuni.fi/handle/10024/118591
- > Source code
 - https://github.com/donkkis/modelconductor
- > The work presented has been funded by E3Power project (Business Finland)
 - http://e3power.fi/

CREATING A SMARTER FUTURE TODAY

Panu Aho

Data science consultant +358 50 4129 150 panu.aho@wapice.com

© Wapice Ltd. CONFIDENTIAL