5GVIIIMIA

5G FOR INDUSTRY

LESSONS LEARNED IN 5G-VIIMA RESEARCH PROJECT

FIIF Event – Private 5G Networks, 18 February 2021 Dr.Sc., Ph.D. Marja Matinmikko-Blue, 6G Flagship Research Coordinator Centre for Wireless Communications (CWC), University of Oulu

OUTLINE

- 5G-VIIMA approach
- Local (private) 5G networks
- Results higlights

5G-VIIMA

- 2-year project until 04/2021, Business Finland funded.
- 7 academic, 17 industry parties, 3 public sector organizations
- Key Focus:
 - Industry 4.0 relevant 5G technologies
 - Wireless industry services
 - Practical experiments
 - Business environment analysis

New Assets and Practical Experiments

⁵⁶VIMAL

- Investigating and exploring 5G technologies bringing value to Industry sector
- Enabling wireless connectivity to existing Industrial products
- Exploring new ways of using data
- Running Practical experiments in a factory, a controlled semi-open outdoor/indoor industry campus and smart energy grids

Involved Partners

Experiment Networks in real Industrial use

•

•

Business Environment Analysis

- Deep-dives into selected trial environment
 - Use case analysis for involved stakeholders
 - Modelling for techno-economics
 - Impacting to legislation, regulation and policies

LOCAL 5G NETWORKS

Towards Local Operator Paradigm

- Stakeholder roles are changing. Different stakeholders can have their own local 5G networks¹, independent of mobile network operators, through local spectrum licenses².
- Progress is slow and divergence in spectrum decisions between countries is high³, leading to market fragmentation.
- MNOs offer local private 4G/5G networks.

¹M. Matinmikko, et al. (2017) **Micro operators to boost local service delivery in 5G**. Wireless Personal Communications, 95(1), 69-82.

²M. Matinmikko, et al. (2018) **On regulations for 5G: Micro licensing for locally operated networks**. Telecommunications Policy, 42(8), 622-635.

³M. Matinmikko-Blue, et al. (2019) **Analysis of Spectrum Valuation Elements for Local 5G Networks: Case Study of 3.5-GHz Band**. IEEE Transactions on Cognitive Communications and Networking, 5(3), 741-753.

http://6gflagship.com/6gwhitepaper/

⁵GVIMAL

Emergence of local 5G networks

- Finnish uO5G project (2016-2018) developed a local 5G micro operator concept to allow different stakeholders to deploy their own local 5G networks.
- At that time, the majority of 5G research and development considered MNO deployments.
- Since then, growing interest towards local 5G networks has led to new deployment models, depending on spectrum availability.

Local 5G micro operators can operate a closed network for its own customers, act as neutral host for MNOs' customers, or serve both.

M. Matinmikko, M. Latva-aho, P. Ahokangas, S. Yrjölä, and T. Koivumäki. Micro operators to boost local service delivery in 5G. Wireless Personal Communications, vol. 95, no. 1, pp. 69-82, May 2017.

Spectrum Management Approaches

Administrative allocation:	Market-based mechanism:	Unlicensed commons approach:
Regulator decides who can access spectrum. Aims at creating rules that minimize harmful interference and	Regulator defines spectrum property rights that are awarded using market mechanisms (e.g.	Regulator allows spectrum access to many under defined rules and conditions.
protect existing users.	auctions).	Entirely based on spectrum sharing
Spectrum sharing between systems is possible but not actively promoted.	Allows and promotes spectrum sharing through secondary markets.	through technical criteria for sharing.

M. Matinmikko-Blue, S. Yrjölä, V. Seppänen, P. Ahokangas, H. Hämmäinen and M. Latva-Aho. Analysis of Spectrum Valuation Elements for Local 5G Networks: Case Study of 3.5-GHz Band. IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 741-753, Sept. 2019.

Diverging 5G Spectrum Awards Mechanisms ^{5G}VIIMA

Administrative allocation:

Local spectrum access rights are emerging in many countries.

Many auctions could have been conducted through administrative allocation due to the selected rules. Market-based mechanism:

Auctions used in 5G spectrum awards extensively. Rules and obligations vary highly between countries.

Secondary markets typically allowed allowing MNOs to transfer rights. Unlicensed commons approach:

5G variants operating in unlicensed bands are starting to be introduced.

M. Matinmikko-Blue, S. Yrjölä, V. Seppänen, P. Ahokangas, H. Hämmäinen and M. Latva-Aho. Analysis of Spectrum Valuation Elements for Local 5G Networks: Case Study of 3.5-GHz Band. IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 741-753, Sept. 2019.

5G-VIIMA RESULTS HIGHLIGHTS

Remote Operations

- Reliable / low-latency connectivity for port automation and smart grid
- Remote robot control
- Telepresence & operations in XR
- Collaboration & support in XR
- Robot integration to XR

Collect Data and Show It

- Mobile network quality monitoring and visualization
- Environmental data collection
- Digital twin of port

Video Services

- Algorithms for object identification
- Analytics for material buffer analysis
- Analytics for process quality ensurance

Business Environment Analysis

Stakeholder identification

Business model creation

	Components	Interfaces	Data	Algorithms
Commerce	Digital twin Local computing services	Access to data	Marketplace for data	Data analytics services
Context	Situational awareness	Cyber security Physical gates	Control and monitoring data for robots	Video analytics
Content	Sensors Video cameras	Cloud and device interfaces	IoT sensor data Open data	3D map of area as digital twin
Connectivity Computing	Private mobile network Private computing platform	Network management Open interfaces	Local data warehousing "Digital Twin"	Operational awareness and optimization

⁵GVIIMAL

Regulatory element identification

Spectrum
Operator role
Competition
Access to infrastructure
Radio equipment authorization
Security and privacy
Vertical specific regulations

5G-VIIMA continuation planning is taking place in new SISU (Sustainable Wireless Industrial Solutions) consortium.

Applications

Industry Campus

Contact: Olli.liinamaa@oulu.fi Marja.matinmikko@oulu.fi

5GVIIMAL

5G FOR INDUSTRY

